• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterización de las propiedades electrofisiológicas del canal de potasio en membranas apicales del sinciciotrofoblasto placentario humano

Guerrero Calderón, Ivonne Daniela January 2008 (has links)
Memoria para optar al Titulo Profesional de Médico Veterinario / La placenta cumple funciones fundamentales para del desarrollo embrionario, entre ellas destaca el transporte transplacentario de solutos. La principal barrera para el intercambio de solutos entre la sangre materna y la fetal es el sinciciotrofoblasto placentario (STP), en el cual se distinguen dos membranas: una en el lado materno que recibe el nombre de membrana apical y la otra en el lado fetal, que recibe el nombre de membrana basal (Shennan y Boyd, 1987). El trofoblasto placentario se caracteriza por ser un sincicio, es decir, un epitelio sin rutas paracelulares, lo que implica que todos los solutos deben pasar directamente a través de sus dos membranas, ellas son la membrana apical (MVM) y la membrana basal (BM). Es por ello, que para desarrollar un modelo de transporte transplacentario, es necesario identificar las vías conductivas existentes en ambas membranas. Dentro de este contexto, nuestro laboratorio ha aportado numerosos estudios acerca del transporte a través de canales iónicos, para completar este modelo. El canal de potasio (K+) juega un rol esencial en los epitelios, así como también en el STP, sin embargo, no existían evidencias directas de la presencia de canales de K+ en las membranas del sincicio. En este trabajo se identificó y caracterizó las conductancias iónicas de K+ presentes en la membrana apical, en particular en una sub-fracción obtenida en la fase final del protocolo de purificación de membranas de sinciciotrofoblasto (Jiménez et al., 2004). Dicha fase consiste en una gradiente de sacarosa, que en su interfase 10/37%, contiene esta sub-fracción la cual se ha denominado LMVM o fracción de membrana apical liviana, que comparte similares características con la fracción conocida tradicionalmente como membrana apical pesada en enriquecimiento con fosfatasa alcalina, marcador de membrana apical. Sin embargo, tiene diferencias en los microdominios lipidicos presentes en ambas, en las proteínas del citoesqueleto asociadas a ellas y en la cantidad de colesterol (Godoy et al., 2008). Esto último nos sugiere que el canal de K+ podría estar presente en la LMVM, a pesar de no haber sido encontrada en la MVM. Las corrientes iónicas provenientes de LMVM fueron registradas mediante la técnica de patch clamp en un sistema lipídico artificial, los “liposomas gigantes”, a través de la modalidad de “parche escindido”. Los resultados obtenidos indican que existen corrientes iónicas de K+ en la LMVM, que fueron reguladas en forma específica por NaCl, reduciendo la intensidad de corriente en los sellos dependiendo de la concentración usada, pero independiente del potencial aplicado. A su vez también fueron probados bloqueadores de canales de K+ tales como el TEA y el Bario en forma independiente y luego de manera aditiva, los cuales redujeron la intensidad de corriente en los sellos en distintas magnitudes. Los resultados de esta memoria, constituyen un aporte al modelo de transporte transplacentario a través del STP, así como al entendimiento de los mecanismos de regulación del canal de K+ y el papel que puede cumplir en la modulación del transporte de este ión en la placenta, lo que en el futuro podría otorgar información sobre posibles patologías asociadas a este
2

Segregación de distintos tipos de canales de potasio en microdominios lipídicos de membrana apical de sinciciotrofoblasto placentario humano

Berríos Díaz, María Macarena January 2010 (has links)
Memoria para optar al Título Profesional de Médico Veterinario / Durante décadas, la estructura de las membranas biológicas fue caracterizada como un Mosaico Fluido, pero posteriormente surgió evidencia de la presencia de Lipid Rafts o Microdominios Lipídicos, que son estructuras de membrana enriquecidas en esfingolípidos y colesterol que contienen diversas proteínas y cumplen roles específicos dentro de la membrana. Recientemente, se ha reportado la presencia de estas estructuras, además de una serie de canales iónicos, en las membranas del Sinciciotrofoblasto placentario humano (hSTB), epitelio sincicial responsable del intercambio materno-fetal en la gestación. Este tejido posee membrana basal y membrana apical, la cual se subdivide en dos subdominios; uno pesado o MVM y uno liviano o LMVM. Por otra parte, existen antecedentes de que la asociación de un canal de potasio a microdominios de membrana tiene implicancias en el funcionamiento del canal, por lo que, el objetivo del presente estudio es describir la segregación de los canales de potasio previamente identificado en placenta KV 2.1, KIR 2.1, TREK-1 y TASK-1 en dominios Rafts de MVM y LMVM del hSTB. A partir de placentas de término, se obtuvieron la membrana basal y los dos sub-dominios de membrana apical del hSTB. Luego, MVM y LMVM se solubilizaron con detergente Tritón-X-100 y se centrifugaron en una gradiente discontinua de sacarosa, la cual se alicuotó en once fracciones, donde las fracciones insolubles en detergente (1-5) fueron Rafts y el resto no-Rafts. Mediante Western Blot y Dot Blot, se probaron marcadores Rafts (Fosfatasa Alcalina Placentaria o PLAP y gangliósido GM1) y no-Rafts (Receptor de Transferrina Humano o hTf-R), como también los canales de potasio KV 2.1, KIR 2.1, TREK-1 y TASK-1 en las once fracciones. Los resultados indicaron que las fracciones Rafts son ricas en PLAP y GM1, mientras que las no-Rafts ricas en hTf-R, lo cual permite inferir que se lograron aislar los Lipid Rafts. En el caso de los canales de potasio, Kv 2.1 se ubicó en fracciones no-Rafts y KIR 2.1 en fracciones Rafts. La presencia de KIR 2.1 en Rafts además se confirma mediante un experimento con extracción de colesterol. Este es la primera evidencia de segregación de canales de potasio en dominios Rafts y no-Rafts realizado en el hSTB. Sabiendo que KV 2.1 se ubica en sitios no-Rafts y KIR 2.1 en sitios Rafts, resta investigar la implicancia funcional de dicha asociación en la membrana apical, ya sea en condiciones normales como en patologías de la gestación
3

Caracterización de las corrientes totales presentes en membrana basal de sinciciotrofoblasto placentario humano transplantado en ovocitos de Xenopus lavéis

Madrid Campos, Gonzalo Javier January 2010 (has links)
Memoria para optar al Título Profesional de Médico Veterinario / El sinciciotrofoblasto presenta una membrana apical y una membrana basal, que constituyen la principal barrera para el intercambio materno fetal. El cloruro (Cl-) es el principal ión extracelular y su paso através de la membrana apical ha sido ampliamente estudiado. Sin embargo, en la membrana basal el transporte de cloruro ha sido poco estudiado. El presente trabajo es el primero en describir las vías conductivas de cloruro existentes en la membrana basal (MB) del sinciciotrofoblasto trasplantado a ovocitos de Xenopus leavis a través del método de Voltage clamp. Al transplantar MB a ovocitos de Xenopus Laevis, estos muestran un aumento de corrientes de al menos 3 veces en comparación a ovocitos controles y un aumento de conductancia de cuerda a 40 mV de 5,9 μS promedio. Además a 30 mV las corrientes exógenas disminuyeron en un 51,8% al agregar ácido 4,4'-diisotiocianatoestilbeno-2,2'-disulfónico (DIDS) y en un 52,8% al agregar ácido difenilamina-2-carboxílico (DPC), ambos conocidos bloqueadores de canales de Cl-. Estos datos demuestran la presencia vías conductivas para Cl- en la MB del sinciciotrofoblasto placentario humano / Financiamiento: Proyecto Fondecyt 1070695

Page generated in 0.0897 seconds