Spelling suggestions: "subject:"circulateur"" "subject:"circulateurs""
1 |
Électrodynamique quantique en guide d'ondeLalumière, Kevin January 2015 (has links)
L'électrodynamique quantique en guide d'onde étudie le comportement de circuits électriques supraconducteurs composés entre autres de jonctions Josephson et de lignes à transmission. Ces circuits présentent peu de pertes puisqu'ils sont supraconducteurs. De plus, grâce à la non-linéarité des jonctions Josephson, ils peuvent présenter des comportements typiquement quantiques.
Dans cette thèse, nous élaborons un cadre théorique qui permet de traiter la connexion entre les lignes à transmission et les éléments de circuits localisés (lumped element). Nous présentons ensuite la théorie d'entrée-sortie dans le contexte de ce cadre théorique. Comme son nom l'indique, celle-ci lie les observables à la sortie du circuit à celles à son entrée et elle permet de faire des prédictions expérimentales. Nous obtenons aussi une équation maîtresse qui décrit le circuit lorsque l'information contenue dans les lignes à transmission est perdue ou ignorée.
Nous utilisons le cadre théorique développé pour étudier la situation où deux circuits qui se comportent chacun comme un atome sont connectés à une ligne à transmission. Nous montrons que la physique dans ce type de système dépend de la distance entre les deux atomes artificiels. Lorsque la distance est telle que la phase [phi] acquise par le champ électromagnétique entre les deux atomes artificiels est un multiple entier de [pi], on observe qu'une superposition d'états particulière des atomes est couplée à la ligne à transmission. On dit que cet état est brillant tandis que l'autre état est dit sombre. Lorsque la phase [phi] acquise par le champ électromagnétique est un multiple impair de [pi]/2, on observe plutôt une interaction cohérente entre les deux atomes artificiels. Nous suggérerons des protocoles pour observer des signatures expérimentales de cette physique. Nous présentons des résultats expérimentaux obtenus suite à ces prédictions par nos collègues du groupe d'Andreas Wallraff à Zurich. Ces résultats confirment la théorie. Parmi ces données, on retrouve la première mesure d'une signature claire de l'interaction cohérente entre deux atomes.
Nous utilisons aussi le cadre théorique développé pour étudier des circuits dans lesquels les inductances dépendent du temps. Nous nous intéressons à ces circuits puisqu'ils sont généralement non réciproque, ce qui en fait des candidats idéaux pour implémenter des circulateurs. Ces dispositifs qui permettent d'obtenir un couplage unidirectionnel entre deux circuits sont généralement réalisés à l'aide d'aimants. Ainsi, un défi important du domaine est de concevoir un circulateur qui peut s'intégrer à un circuit supraconducteur. On utilise notre cadre théorique pour décrire les circuits avec des inductances variables à l'aide d'un opérateur de transfert qui relient les entrées du circuit à ses sorties. Cet objet permet d'extraire les conditions sous lesquelles ce type de circuit se comporte comme un circulateur. On utilise aussi l'opérateur de transfert pour étudier un modèle de circuit qui sera testé sous peu par nos collaborateurs de JILA dans le but d'implémenter un des premiers circulateurs sans conversion de fréquence nette, sans pertes et sans ferrite. On montre que ce modèle de circuit se comporte bien comme un circulateur, avec une largeur de bande de l'ordre de 200 MHz et un niveau d'imperfections de -20 dB.
|
2 |
Propriétés électromagnétiques de nanofils métalliques magnétiques orientés : effets non-réciproquesAllaeys, Jean-François 28 September 2007 (has links) (PDF)
L'objectif de cette thèse est d'étudier la possibilité d'utiliser des membranes chargées de nanofils métalliques magnétiques comme matériau non-réciproque dans des circulateurs hyperfréquence. Ces dispositifs utilisent très largement des ferrites polarisés par des aimants permanents, ce qui les rend coûteux et encombrants. Le remplacement de ces ferrites par des membranes de polymère irradié, chargées de nanofils métalliques magnétiques orientés, a déjà donné naissance à un dispositif présentant un effet non-réciproque sans polarisation externe, mais avec des pertes d'insertion de plus de 10 dB. La réduction des pertes d'insertion des dispositifs à membranes chargées de nanofils est recherchée. Dans le cadre de cette thèse, les propriétés du matériau utiles à la conception, à la simulation et à la réalisation de dispositifs non-réciproques sont étudiées. La contribution des différents facteurs de dissipation aux pertes d'insertion est évaluée, ce qui permet d'identifier les facteurs clés et de proposer des solutions réduisant les pertes conducteurs, les pertes magnétiques, et les pertes diélectriques par rapport au dispositif pré-existant. La pertinence de ces solutions est évaluée par les simulations et mesures de dispositifs. Enfin, de nouvelles technologies à explorer sont proposées pour la fabrication du diélectrique à nanofils magnétiques, elles permettraient d'appliquer conjointement les diverses solutions de réduction de pertes présentées dans cette thèse.
|
3 |
Etude et mise au point de ferrites de structure grenat à basse température de frittage pour intégration dans les circulateurs hyperfréquences / Study and optimization of low sintering temperature ferrimagnetic garnets for integration in microwave circulatorsQassym, Lilia 06 December 2017 (has links)
Les systèmes embarqués dans les aéronefs comme dans les véhicules spatiaux doivent impérativement se conformer aux impératifs de masse et de volume mais aussi de coût. Les modules actifs pour antenne à balayage électronique constituent, dans ce cadre, un enjeu stratégique majeur en termes de masse, de volume et de fiabilité. Dans une antenne à balayage électronique actuelle, on peut trouver jusqu’à 1000 modules, chacun étant équipé d’un circulateur-isolateur afin de garantir ses performances. La technologie des circulateurs et des isolateurs à ferrite reste la plus performante en termes d’isolation et de pertes d’insertion. Elle est de plus totalement passive et ne demande aucune énergie extérieure pour son fonctionnement. Elle reste néanmoins coûteuse car la fabrication industrielle de ces dispositifs consiste à assembler mécaniquement de nombreuses pièces usinées précisément : céramiques magnétiques et diélectriques, aimants, conducteurs en cuivre et pièces en métal magnétique doux. De plus, le niveau d’intégration recherché nécessite de réduire les dimensions sans augmenter les pertes pour des niveaux de puissance qui peuvent être importants. S’inspirant des composants céramiques multicouches (condensateurs et inductances) ainsi que de la technologie LTCC (Low Temperature Cofired Ceramics), une nouvelle voie de fabrication de ces composants, en rupture avec les technologies d’assemblage traditionnelles, est abordée dans ces travaux de thèse. L’idée consiste à réaliser par cofrittage le cœur du composant qui est le plus délicat à ajuster et qui détermine le volume final. Les ferrites qui constituent actuellement le cœur des circulateurs sont principalement des grenats ferrimagnétiques fabriqués par des techniques céramiques classiques et frittés à haute température (> 1400°C). Pour les rendre compatibles de la technologie LTCC, il est nécessaire de diminuer leur température de frittage. Les températures visées doivent être inférieures à 1000°C pour pouvoir cofritter avec des parties métalliques en or et si possible être proches de 900°C pour espérer cofritter avec de l’argent. Dans ce contexte, l’objectif de ce travail de thèse était de mettre au point des grenats ferrimagnétiques pour des applications en hyperfréquences présentant des températures de frittage proche de 900°C. Ces ferrites ont alors été utilisés pour la réalisation de circulateurs hyperfréquences, composants indispensables dans les systèmes de Radars et de télécommunications. De plus, des études d’optimisation des propriétés magnétiques et diélectriques de ces ferrites ont aussi été réalisées pour adapter le ferrite aux conditions de fonctionnement (gamme de fréquence et niveau de puissance). / Embedded systems in aircraft must comply with the requirements of mass, volume and cost. The active modules of electronic scanning antenna are, in this context, a strategic challenge in terms of mass, volume and reliability. Today, there are up to 1000 modules per antenna, each one containing a circulator-isolator in order to guarantee its performances. The technology of ferrite circulators and isolators remains the most efficient in terms of isolation and insertion losses. It is also fully passive as no external energy is required to work. However this technology is expensive due to complex mechanical assembling of the different materials: magnetic and dielectric ceramics, magnets, conductors made of copper and soft metallic material. The integration of such devices also requires the reduction of dimensions without increasing losses for power levels that can be high. Based on by multilayer ceramic components (capacitors and inductors) as well as Low Temperature Cofired Ceramics (LTCC) technology, a new way of manufacturing these components, is investigated in this PhD work.. The idea is to be able to cofire the heart of the component which is the most difficult to adjust and also determines the final volume. The ferrites which currently constitute the core of the circulators are ferrimagnetic garnets synthetized by using a conventional ceramic process and sintered at high temperature (> 1400°C). To make them compatible with LTCC technology, it is essential to reduce their sintering temperature. The targeted temperatures must be less than 1000°C in order to cofire with gold metal parts and, if possible, close to 900°C for circulators with silver. In this context, the objective of this PhD work was to develop a ferrimagnetic garnet for microwave applications with sintering temperatures close to 900°C. This ferrite was then used for the preparation of microwave circulators which are essential components in radar and telecommunications systems. In addition, studies of optimization of the magnetic and dielectric properties have also been carried out to meet the operating requirements (frequency band and power level).
|
4 |
Etude et réalisation d'un circulateur hyperfréquence à nano particules magnétiques orientées dans la bande 40-60GHzBoyajian, Taline 27 September 2011 (has links) (PDF)
Les composants passifs hyperfréquences deviennent de plus en plus commercialisés et employés dans les systèmes de télécommunications. La croissance technologique et l'augmentation de la demande des nouvelles applications requièrent de meilleures performances et de moindres coûts. Dans les applications sans fil et notamment dans les modules " émission/réception ", les circulateurs sont utilisés pour l'émission et la réception des signaux simultanément à l'aide d'une seule antenne. Les couches magnétiques traditionnellement déposées et intégrées exigent une cristallisation à haute température ainsi que l'application d'un champ magnétique externe pour garder l'orientation des moments magnétiques. Cette orientation est cependant obtenue par des aimants lourds et volumineux. Devant ces limitations technologiques ainsi que la demande de miniaturisation, l'emploi de l'hexaferrite de baryum sous sa forme particulaire devrait permettre le développement de circulateurs auto-polarisés et miniaturisés à matériaux magnétiques composites. Les travaux présentés dans ce manuscrit ont pour objectif d'étudier et de réaliser un circulateur hyperfréquence à nano particules magnétiques orientées dans la bande 40-60 GHz. L'état de l'art expose les différentes topologies de circulateurs dont la topologie coplanaire est choisie pour notre application. L'étude analytique est basée sur les travaux de Bosma permettant de modéliser le circulateur triplaque. Les principales dimensions géométriques obtenues sont ensuite transposées vers la structure coplanaire en 3D à l'aide de l'outil de simulation HFSS. Devant les limitations de cet outil, différentes structures ont été étudiées et simulées numériquement pour présenter au mieux le matériau composite. Plusieurs séries de prototypes sont ensuite fabriquées à partir des structures optimisées en simulation numérique. Le matériau magnétique composite déposé a des épaisseurs de 40 et 100 μm. Les caractérisations hyperfréquences montrent la performance des dispositifs réalisés. Des pistes de recherche sont proposées pour l'amélioration des performances de nos prototypes.
|
5 |
Non reciprocal passive components on LTCC ferrite substrate / Composants passifs non réciproques hyperfréquences sur substrat ferrite LTCCYang, Shicheng 02 October 2015 (has links)
Cette thèse concerne de l’étude de composants passifs non-réciproque (circulateurs) fabriqué sur substrat LTCC ferrite. Les aimants externes utilisés dans les circulateurs classiques doivent créer un champ magnétique intense pour compenser le champs de démagnétisant dans le ferrite. Le nouveau circulateur présenté ici utilise une bobine intégrée dans le LTCC ferrite pour magnétiser le matériau de l'intérieur, pour réduire considérablement les effets des champs démagnétisants. Il est possible de contrôler le champ de polarisation rendant le dispositif multifonctionnel: lorsque la bobine est excitée par un courant, le dispositif fonctionne comme un circulateur dynamique dans lequel la direction de circulation peut être basculée en changeant la direction du courant. Si un aimant externe est placé sur le circulateur, sa fréquence de fonctionnement peut être accordée en ajustant le courant de polarisation. Contrairement à d'autres circulateurs LTCC avec aimants externes, le dispositif proposé peut même fonctionner comme un diviseur de puissance sans courant de polarisation. Un prototype de circulateur a été réalisé et caractérisé dans trois états: 1. démagnétisé, 2. Magnétisé par la bobine, 3. magnétisé par la bobine et des aimants externes. En l'absence de courant appliqué, la transmission de chaque port est d'environ -5 dB avec un coefficient de réflexion inférieur à -20 dB à 14,8 GHz. Quand un courant de 300 mA est injecté dans la bobine, les pertes d'insertion et l'isolation mesurées sont d'environ 3 dB et 8 dB, respectivement. Le coefficient de réflexion est inférieur à -20 dB à 14,2 GHz. Lorsque les aimants externes sont ajoutés avec un courant de 200 mA, les pertes d'insertion et l'isolation a été améliorée à 1,6 dB et 23 dB, respectivement à 14,2 GHz. La variation de la fréquence de travail du circulateur est de 0,6 GHz. Elle est due par la variation de l'aimantation M interne lorsque le courant est inférieur à 120 mA, puis par l’augmentation de la température créée par le courant dans la bobine. La taille (L * W * H) totale du circulateur réalisé est de 8mm * 8mm *1.1mm. Ce travail monte qu’il est possible d’intégrer (MMIC) sur un substrat LTCC ferrite des circuits passifs non-réciproques / This thesis investigates passive non-reciprocal components (mainly circulators) based on ferrite Low Temperature Co-fired Ceramic (LTCC) substrate. The external magnets used in conventional circulators must be strong to overcome the ferrite's demagnetization field. The novel circulator presented herein uses an embedded winding within the ferrite substrate to magnetize the material from the inside, thereby significantly reducing the demagnetization effects. Because of the controllability of the bias field, the resulting device is also multifunctional: when the windings are energized by a current, the device operates as a dynamic circulator in which the circulation direction can be changed by switching the direction of the current. Unlike other LTCC circulators with external magnets, the proposed device can even operate as a power splitter by removing the bias current. A circulator prototype has been characterized in three states: unbiased, biased by winding and biased by winding and external magnets. When no current is applied, the transmission of each port is about -5 dB with return loss better than 20 dB at 14.8 GHz. When a current of 300 mA is injected into the winding, the measured insertion loss and isolation of the circulator is approximately 3 dB and 8 dB, respectively, whereas the return loss is better than 20 dB at 14.2 GHz. When external magnets are added in addition to the current of 200 mA, the insertion loss and isolation is improved to 1.6 dB and 23 dB, respectively at 14.2 GHz. The variation of the circulator's working frequency is 0.6 GHz. This is achieved firstly by the change of internal magnetization M when current is less than 120 mA, then the heat in the substrate due to the winding introduces more frequency shifting. The total size (L*W*H) is 8mm*8mm*1.1mm
|
6 |
Etude et réalisation d'un circulateur hyperfréquence à nano particules magnétiques orientées dans la bande 40-60GHz / Study and fabrication of a microwave circulator with magnetic nanoparticles oriented in the 40-60 GHz rangeBoyajian, Taline 27 September 2011 (has links)
Les composants passifs hyperfréquences deviennent de plus en plus commercialisés et employés dans les systèmes de télécommunications. La croissance technologique et l’augmentation de la demande des nouvelles applications requièrent de meilleures performances et de moindres coûts. Dans les applications sans fil et notamment dans les modules « émission/réception », les circulateurs sont utilisés pour l’émission et la réception des signaux simultanément à l’aide d’une seule antenne. Les couches magnétiques traditionnellement déposées et intégrées exigent une cristallisation à haute température ainsi que l’application d’un champ magnétique externe pour garder l’orientation des moments magnétiques. Cette orientation est cependant obtenue par des aimants lourds et volumineux. Devant ces limitations technologiques ainsi que la demande de miniaturisation, l’emploi de l’hexaferrite de baryum sous sa forme particulaire devrait permettre le développement de circulateurs auto-polarisés et miniaturisés à matériaux magnétiques composites. Les travaux présentés dans ce manuscrit ont pour objectif d’étudier et de réaliser un circulateur hyperfréquence à nano particules magnétiques orientées dans la bande 40-60 GHz. L’état de l’art expose les différentes topologies de circulateurs dont la topologie coplanaire est choisie pour notre application. L’étude analytique est basée sur les travaux de Bosma permettant de modéliser le circulateur triplaque. Les principales dimensions géométriques obtenues sont ensuite transposées vers la structure coplanaire en 3D à l’aide de l’outil de simulation HFSS. Devant les limitations de cet outil, différentes structures ont été étudiées et simulées numériquement pour présenter au mieux le matériau composite. Plusieurs séries de prototypes sont ensuite fabriquées à partir des structures optimisées en simulation numérique. Le matériau magnétique composite déposé a des épaisseurs de 40 et 100 μm. Les caractérisations hyperfréquences montrent la performance des dispositifs réalisés. Des pistes de recherche sont proposées pour l’amélioration des performances de nos prototypes / Microwave passive components become increasingly commercialized and used in telecommunications systems. Technological growth and the increased demand for new applications require higher performance and lower costs. In wireless applications, especially in "transceivers", circulators are used for transmitting and receiving signals simultaneously using a single antenna. Magnetic layers traditionally deposited and integrated require a high crystallization temperature and the application of an external magnetic field to keep the orientation of magnetic moments. This orientation is however obtained by heavy and bulky magnets. Given these technological limitations and the need to miniaturize, the use of barium hexaferrite particles envisages the development of self-biased and miniaturized circulators having magnetic composite materials. The ambition of this work is to study and to fabricate a microwave circulator with magnetic nanoparticles oriented in the 40 - 60 GHz range. The state of the art describes various topologies coplanar circulators from which the coplanar topology is chosen for our application. The analytical study is based on Bosma’s work to model the stripline circulator. The main geometric dimensions obtained are then transposed to the coplanar structure using the 3D simulation tool HFSS. Faced with this tool’s limitations, different structures were studied and simulated numerically to shape the best the composite material. Several series of prototypes are then manufactured. The magnetic composite material was deposited in layers having thicknesses of 40 and 100 μm. The microwave characterizations show the performance of the fabricated device. Research tracks are proposed to improve the performance of our prototypes
|
7 |
Conception de circulateurs et isolateurs pour des applications spatiales : nouvelles technologies d'intégration / Design of circulators and isolators for space applications : new technologies of integrationNoutehou, Nathan 23 May 2019 (has links)
L’objectif de cette thèse est d’explorer de nouvelles technologies permettant de faciliter l’intégration des isolateurs dans les chaînes radiofréquences de satellites. Ces composants sont utilisés pour contrôler l’adaptation des amplificateurs dans les sections d’entrée et de sortie des équipements RF bas niveaux. Nous proposons deux voies de réalisation de ces isolateurs. Une première voie basée sur l’utilisation de matériaux ferricomposites est étudiée pour concevoir des composants en bande Ku. Une deuxième voie, basée sur l’utilisation d’hexaferrites de strontium et de baryum préorientés, a été étudiée pour concevoir des composants auto-polarisés (sans aimants) en bandes Q et Ka. / The goal of this PhD thesis is to explore new technologies that make possible to improve the integration of isolators in radiofrequency chain of satellites. These components are especially used to control matching of amplifiers.We propose two ways of producing these isolators. At first, ferricomposite materials are studied to design low-cost isolators at Kuband.Then, we studied pre-oriented strontium or barium hexaferrites to design self-biased components (without magnets) for Q and Ka band frequencies.
|
8 |
Conception et Réalisation d'un Circulateur Coplanaire à Couche Magnétique de YIG en Bande X pour des Applications en TélécommunicationsZahwe, Oussama 17 June 2009 (has links) (PDF)
Dans le domaine des hyperfréquences, les composants passifs actuellement commercialisés, de type circulateurs ou isolateurs, sont fabriqués de façon unitaire à partir des substrats de ferrite et avec des structures microruban ou triplaque. La miniaturisation et l'intégration des ces circulateurs nécessitent de disposer d'une couche mince magnétique qui possède des propriétés magnétiques proche des matériaux massifs. Ce travail s'intéresse donc à deux points particuliers pour la réalisation du circulateur : miniaturisation et fabrication collective. Les travaux relatés dans ce manuscrit ont pour objectif la conception et la réalisation d'un circulateur coplanaire à couche magnétique de YIG en bande X pour des applications en télécommunications. L'étude présentée débute la mise en place d'un processus de dimensionnement. A partir des travaux de Bosma, les règles de design sont mises en place de façon analytique pour un circulateur triplaque. Après avoir affiné les dimensions de façon numérique, les résultats sont transposés à la structure coplanaire et optimisés à l'aide d'un simulateur électromagnétique. Plusieurs structures de circulateur en couche mince et couche massive sont utilisées. Les épaisseurs vont de 16 à 1000 µm. Plusieurs séries de prototypes sont fabriquées puis caractérisées à partir d'un banc de mesure hyperfréquence composé d'un testeur sous pointes à trois accès et d'un analyseur vectoriel de réseaux. Les résultats expérimentaux de différents prototypes de différentes épaisseurs sont présentés tout en dressant une comparaison avec les rétro-simulations en 3D. Une réflexion sur les résultats généraux est réalisée et nous proposons des pistes pour l'amélioration des performances de nos prototypes.
|
9 |
Utilisation de matériaux composites magnétiques à nanoparticules pour la réalisation de composants passifs non réciproques micro-ondes / Use of composite materials with magnetic nanoparticles for the realization of passive non-reciprocal microwave componentsTchangoulian, Ardaches 24 October 2014 (has links)
Dans les systèmes des télécommunications, beaucoup d’études ont été entreprises pour intégrer des composants passifs non réciproques. Le bon fonctionnement des circulateurs exige souvent des aimants volumineux et lourds qui assurent une orientation uniforme des moments magnétiques du matériau ferrite. Pour tendre vers l’intégration et la miniaturisation des circulateurs, les nanotechnologies peuvent offrir des solutions intéressantes. L’objectif de cette thèse a été de développer un circulateur coplanaire auto-polarisé. L'approche choisie est fondée sur la réalisation de substrats composites à «nano-fil ferrimagnétiques». Elle consiste à faire un dépôt par magnétophorèse ou dip-coating de nanoparticules de ferrite de cobalt dans des membranes d’alumine poreuses et de les orienter sous champ magnétique de manière uniforme. Des substrats composites magnétiques ont été fabriqués à partir de nanoparticules CoFe2O4 dispersées dans une matrice sol-gel de silice en utilisant la technique de Dip-coating avec et sans un champ magnétique appliqué. De nombreuses études ont été faites afin d'étudier le comportement magnétique et diélectrique de ces substrats : VSM, polarimétrie spectrale, MFM et autres. Les cycles d'hystérésis montrent une forte différence des valeurs des champs coercitifs (μ0Hc) et rémanents (Mr/Ms) si, durant la fabrication, un champ magnétique est appliqué ou non, démontrant ainsi l'orientation (ou non) des nanoparticules. Ce nano-composite est un candidat intéressant pour la fabrication de circulateurs même si la concentration et l’orientation des particules sont insuffisantes. Des circulateurs ont été conçus, modélisés et simulés à l'aide du logiciel HFSS. Suite à des résultats de simulation intéressants; un premier prototype a été fabriqué et caractérisé en hautes fréquences. Les résultats de mesure ont montré un phénomène de circulation, qui reste très faible en raison du faible pourcentage de nanoparticules magnétiques dans le composite et de leur orientation imparfaite. Les verrous technologiques ont été clairement identifiés et ne permettent pas, pour l’instant, de réaliser un circulateur opérationnel / In telecommunications systems, many studies have been undertaken to integrate non-reciprocal passive components. The proper functioning of circulators often requires large and heavy magnets that ensure a uniform orientation of the magnetic moments of the ferrite material. To work towards the integration and miniaturization of circulators, nanotechnology can offer interesting solutions. The aim of this thesis was to develop a self-biased coplanar circulator. The approach is based on the production of composite substrates "ferrimagnetic nanowire." It consists in a magnetophoresis or a dip-coating deposition of cobalt ferrite nanoparticles in porous alumina membranes and orienting them in a magnetic field uniformly. Magnetic composite substrates were made from CoFe2O4 nanoparticles dispersed in a matrix of silica sol-gel using the dip-coating technique with and without an applied magnetic field. Many studies have been made to study the magnetic and dielectric behavior of these substrates: VSM, spectral polarimetry, MFM and others. The hysteresis loops show a strong difference in the values of coercive fields (μ0Hc) and persistent (Mr / Ms) if, during the fabrication, a magnetic field is applied or not, therefore showing the orientation (or not) of nanoparticles. This nano-composite is an interesting candidate for the fabrication of circulators even if the concentration and the particle orientation are insufficient. Circulators were designed, modeled and simulated using the HFSS software. Following the interesting results of simulation; a first prototype was fabricated and characterized at high frequencies. The measurement results showed a circulation phenomenon, which is very low due to the small percentage of magnetic nanoparticles in the composite and their imperfect orientation. Technological barriers have been clearly identified and do not allow for the time to achieve an operational circulator
|
10 |
Caractérisation et modélisation des propriétés d’émission électronique sous champ magnétique pour des systèmes RF hautes puissances sujets à l’effet multipactor / Characterization and modelling of the secondary electron emission properties under magnetic field for high power RF systems subject to Multipactor effectFil, Nicolas 10 November 2017 (has links)
La fusion nucléaire contrôlée par confinement magnétique avec les réacteurs de type Tokamaks et les applications spatiales ont en commun d’utiliser des composants Haute-Fréquence (HF) sous vide à forte puissance. Ces composants peuvent être sujets à l’effet multipactor qui augmente la densité électronique dans le vide au sein des systèmes, ce qui est susceptible d’induire une dégradation des performances des équipements et de détériorer les composants du système. Ces recherches consistent à améliorer la compréhension et la prédiction de ces phénomènes. Dans un premier temps nous avons réalisé une étude de sensibilité de l’effet multipactor au rendement d’émission électronique totale (noté TEEY). Cette étude a permis de montrer que l’effet multipactor est sensible à des variations d’énergies autour de la première énergie critique et dans la gamme d’énergies entre la première énergie critique et l’énergie du maximum. De plus, les composants HF utilisés dans les réacteurs Tokamak et dans le domaine du spatial peuvent être soumis à un champ magnétique continu. Nous avons donc développé un nouveau dispositif expérimental afin d’étudier ce phénomène. Le fonctionnement du dispositif et la méthode de mesure ont été analysées et optimisées à l’aide de modélisations numériques avec le logiciel PIC SPIS. Une fois que l’utilisation du dispositif a été optimisée et que le protocole de mesures a été validé, nous avons étudié l’influence d’un champ magnétique uniforme et continu sur le TEEY du cuivre. Nous avons démontré que le rendement d’émission électronique totale du cuivre est influencé par la présence d’un champ magnétique et par conséquent également l’effet multipactor. / Space communication payload as well as magnetic confinement fusion devices, among other applications, are affected by multipactor effect. This undesirable phenomenon can appear inside high frequency (HF) components under vacuum and lead to increase the electron density in the vacuum within the system. Multipactor effect can thus disturb the wave signal and trigger local temperature increases or breakdowns. This PhD research aims to improve our understanding and the prediction of the multipactor effect. The multipactor phenomenon is a resonant process which can appear above a certain RF power threshold. To determine this power threshold, experimental tests or/and simulations are commonly used. We have made a study to evaluate the multipactor power threshold sensitivity to the TEEY. Two particular critical parameters have been found: first cross-over energy and the energies between the first cross-over and the maximum energies. In some situations, the HF components are submitted to DC magnetic fields which might affect the electron emission properties and hence the multipactor power threshold. Current multipactor simulation codes don’t take into account the effect of the magnetic field on the TEEY. A new experimental setup specially designed to investigate this effect was developed during this work. Our new experimental setup and the associated TEEY measurement technique were analysed and optimized thanks to measurements and SPIS simulations. We used the setup to study the influence of magnetic field perpendicular to the sample surface on the TEEY of copper. We have demonstrated that the magnetic field affects the copper TEEY, and hence multipactor power threshold.
|
Page generated in 0.0335 seconds