• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control strategies for citrus postharvest diseases

Auret, Erika Elizabeth 19 June 2006 (has links)
Please read the abstract in the section 06resume.pdf of this document / Dissertation (MSc (Plant Pathology))--University of Pretoria, 2007. / Microbiology and Plant Pathology / unrestricted
2

Evaluation of alternatives to synthetic fungicides to control citrus postharvest diseases

Montesinos Herrero, Clara Isabel 05 May 2016 (has links)
[EN] Citrus spp. (Rutaceae) are the most widely produced fruits and they are grown in over a hundred countries. During postharvest, major losses are caused by fungal diseases, that for decades have been controlled by treatments with synthetic fungicides. However, their use is continuously more restricted by distributors and supermarket chains, which lower the Maximum Residue Level (MRL) to one third of the authorized or even ban the use of certain fungicides. This has loss of efficacy of treatments and development of resistant strains of pathogens. Alternatives are necessary to substitute or combine the use of synthetic fungicides. The objective of the present work was to evaluate alternative treatments against green and blue molds, caused by Penicillium digitatum (Pers.: Fr.) Sacc. and Penicillium italicum Wehmer, respectively. Food additives and GRAS substances were tested in in vivo preliminary tests against green and blue molds. Potassium sorbate (PS) (Chapter 2) and sodium benzoate (SB) (Chapter 1) were the most effective. 60-s dips in 3% (w/v) SB above 50°C reduced by 90% green and blue mold incidence on 'Valencia' oranges after 7 days at 20°C. This treatment was also effective on 'Lanelate' oranges, 'Fino' lemons and 'Ortanique' mandarins, but not on 'Clemenules' mandarins. Heated solutions combining SB with low doses of imazalil (IMZ) were synergistic. In semi-commercial trials with 'Marisol' Clementine mandarins, the combination PS+IMZ at 20°C allowed a significant reduction of the IMZ doses still controlling green mold. A new colorimetric method that employed extraction of PS from macerated fruit, followed by reaction with 2-thiobarbituric acid (Chapter 3) showed that in oranges treated with PS and stored at 15°C, residues declined initially rapidly and later more slowly, until residues stopped declining after 6 d. A brief double-dip rinse in tap water, immediately after immersion of lemons in a 2% (w/v) PS, removed more than 90% of PS residue. Exposure at 33ºC with 15 kPa CO2 for 24 h or 30 kPa O2 for 48 h effectively controlled both green and blue molds after 7 days of incubation at 20ºC, but control of both diseases lowered after 15 days (Chapter 4). Combining PS dip treatments with gas exposure showed a synergistic effect, that maintained the efficacy of combined treatments during 15 days. In cold storage, after 14, 28, and 42 days, green mold incidence on 'Clemenules' and 'Ortanique' mandarins treated with PS dips and 30kPa O2 for 48h was reduced by 100, 96 and 68%, and 100, 97 and 79%, respectively. Again, a synergistic effect between treatments was observed (Chapter 5). Postharvest green mold and blue molds were effectively controlled by fumigation of lemons and oranges for 6 h at 22ºC with two applied dosages of 3000 ¿L L-1 of ammonia that was injected initially and again 2 h later (Chapter 6). Ammonia fumigation controlled an IMZ-resistant isolate of P. digitatum. When fruit were first immersed in 10 or 30 mg L-1 IMZ (about 10% of typical commercial rates) before ammonia fumigation, a single fumigation with 1500 ¿L L-1 of ammonia was adequate to control both diseases and the increase in effectiveness was additive or synergistic. All these treatments, at different degrees, could replace synthetic fungicides or augment IMZ performance in citrus postharvest decay management. The development of green and blue molds on the most commercially important citrus species and cultivars was assessed for four consecutive harvest seasons and associated with fruit quality parameters (Chapter 7). Fruit susceptibility of the cultivars to green mold in increasing order was Nova, Sanguinelli, Ortanique, Lanelate, Navelate, Fortune, Clemenules, Valencia, W. Navel, Oronules, Clemenpons, Marisol, Salustiana, Hernandina, and Nadorcott. Peel characteristics were the most influencing quality parameters on the susceptibility of citrus fruit to green and blue molds. / [ES] Los cítricos (Citrus spp. fam. Rutaceae) son la fruta más consumida a nivel mundial y se cultivan en más de un centenar de países. Durante el manejo en poscosecha, la mayor parte de las pérdidas se deben a enfermedades fúngicas, que durante décadas se han controlado mediante tratamientos con fungicidas de síntesis. Sin embargo, su uso está continuamente más restringido por parte de los distribuidores y cadenas de supermercados, que reducen el Límite Máximo de Residuos (LMR) a un tercio del establecido o incluso prohíben el uso de ciertos fungicidas. Esto ha provocado la pérdida de eficacia de los tratamientos y el desarrollo de cepas de patógenos resistentes a los fungicidas. Se necesitan pues alternativas para sustituir o combinar con el uso de fungicidas de síntesis. El objetivo de este trabajo fue evaluar tratamientos alternativos contra las podredumbres verde y azul, causadas por Penicillium digitatum (Pers.: Fr.) Sacc. y Penicillium italicum Wehmer, respectivamente. Aditivos alimentarios y sustancias GRAS se probaron en test in vivo preliminaries contra los mohos verde y azul. El benzoato sódico (BS; Capítulo 1) y el sorbato potásico (SP; Capítulo 2) fueron los más eficaces. Baños de 60 s en 3% (p/v) BS sobre 50°C redujeron en un 90% la incidencia de las podredumbres verde y azul en naranjas 'Valencia Late' tras 7 días a 20°C. Estos tratamientos fueron también efectivos en naranjas 'Lanelate', limones 'Fino' y mandarinas híbridas 'Ortanique', pero no en mandarinas 'Clemenules'. La combinación de baños calientes de BS con dosis bajas de imazalil (IMZ) fueron sinérgicas. Un nuevo método colorimétrico que empleó la extracción del SP de la fruta macerada, seguido de una reacción con ácido 2-tiobabitúrico (Capítulo 3) mostró que en naranjas tratadas con SP almacenadas a 15°C, los residuos descendieron rápidamente al inicio y lentamente más tarde, hasta que dejaron de descender tras 6 días. Un doble aclarado rápido con agua corriente inmediatamente después de la inmersión de limones en SP al 2% (p/v), eliminó más del 90% del residuo de SP. Los choques gaseosos a 33ºC y 15kPa CO2 durante 24 h o 30 kPa O2 durante 48 h controlaron de manera eficaz las podredumbres verde y azul tras 7 días de incubación a 20ºC, pero el control de las dos podredumbres descendió tras 15 días (Capítulo 4). En almacenamiento en frío, tras 14, 28 y 42 días, la incidencia de moho verde en mandarinas 'Clemenules' y 'Ortanique' tratadas con baños con SP y 30kPa O2 durante 48h se redujo en un 100, 96 y 68%, y 100, 97 y 79%, respectivamente. De nuevo, una fuerte sinergia se observó entre los tratamientos (Capítulo 5). Las podredumbres verde y azul se controlaron eficazmente mediante la fumigación de limones y naranjas durante 6 h a 22ºC con dos dosis de 3000 ¿L L-1 amoniaco, inyectadas al inicio del tratamiento y 2 h después (Capítulo 6). El tratamiento con amoniaco controló una cepa de P. digitatum resistente a IMZ. Cuando la fruta se bañó en 10 o 30 mg L-1 IMZ (un 10% de la dosis comercial) antes de la fumigación con amoniaco, una sola aplicación con 1500 ¿L L-1 amoniaco fue suficiente para controlar las dos podredumbres, y el incremento en la eficacia fue aditivo o sinérgico. Todos estos tratamientos, a diferentes niveles, podrían sustituir a los fungicidas de síntesis o aumentar la eficacia de los tratamientos con IMZ en el manejo poscosecha de los cítricos. El desarrollo de las podredumbres verde y azul en las especies y variedades de cítricos más importantes comercialmente se evaluó durante cuatro campañas consecutivas y se relacionó con los parámetros de calidad de la fruta (Capítulo 7). La susceptibilidad de los cultivares en orden creciente fue Nova, Sanguinelli, Ortanique, Lanelate, Navelate, Fortune, Clemenules, Valencia, W. Navel, Oronules, Clemenpons, Marisol, Salustiana, Hernandina, y Nadorcott. Las características de la corteza fueron los parámetros de calidad / [CAT] Els cítrics (Citrus spp. fam. Rutaceae) son la fruita més consumida a nivell mundial i es cultiven en un centenar de països. Durant la poscollita, la major part de les pèrdues es deuen a malalties fúngiques, que durant dècades s'han controlat mitjançant tractaments amb fungicides de síntesi. No obstant, l'ús d'aquestes pràctiques està contínuament més restringit per part dels distribuïdors y cadenes de supermercats, que redueixen el Límit Màxim de Residus (LMR) a un terç del permès per la legislació o inclús prohibeixen l'ús d'alguns fungicides. Açò ha provocat la minora de l'eficàcia dels tractaments poscollita i el desenvolupament de soques dels patògens resistents als fungicides. Es necessari per lo tant trobar i implementar alternatives per a substituir o combinar l'ús de fungicides de síntesi. L'objectiu d'aquest treball ha sigut avaluar tractaments alternatius contra les podridures verda i blava, causades per Penicillium digitatum (Pers.: Fr.) Sacc. i Penicillium italicum Wehmer, respectivament. Additius alimentaris i substàncies GRAS es provaren en test in vivo preliminars contra les podridures verda i blava. El benzoat sòdic (BS; Capítol 1) i el sorbat potàsic (SP; Capítol 2) foren els més eficaços. Solucions calentes de BS combinades amb baixes dosis d'imazalil (IMZ) foren sinèrgiques. Esta combinació va reduir l'incidència de les podridures verda i blava en quasi el 100% en taronges 'Valencia Late' després de 8 setmanes a 5°C i 7 dies a 20°C. En assajos semicomercials mandarines 'Marisol', la combinació SP+IMZ a 20°C va permetre una baixada significativa de la dosis de IMZ sense perdre eficàcia contra la podridura verda. Un nou mètode colorimètric que inclou l'extracció del SP de la fruita macerada, seguit d'una reacció amb àcid 2-tiobabitúric (Capítol 3) mostrà que en taronges tractades amb SP conservades a 15°C, els residus descendiren ràpidament al inici i lentament mes tard, fins que deixaren de descendir després de 6 dies. Un doble rentat ràpid amb aigua corrent immediatament després de d'immersió de llimones en SP al 2% (p/v), eliminà més del 90% del residu de SP. Els xocs gasosos a 33ºC i 15kPa CO2 durant 24 h o 30 kPa O2 durant 48 h controlaren de manera eficaç les podridures verda i blava després de 7 dies d'incubació a 20ºC, però el control de les dos podridures descendí després de 15 dies (Capítol 4). La combinació de banys amb SP i xocs gasosos mostrà un efecte sinèrgic, que mantingué l'eficàcia dels tractaments combinats durant 15 dies. En conservacions en fred, després de 14, 28 i 42 dies, d'incidència de podridura verda en mandarines 'Clemenules' i 'Ortanique' tractades en banys amb SP i 30kPa O2 durant 48h es reduí en un 100, 96 i 68%, i 100, 97 i 79%, respectivament. De nou, una forta sinergia s'observà entre els tractaments (Capítol 5). Les podridures verda i blava es controlaren eficaçment mitjançant la fumigació de llimones i taronges durant 6 h a 22ºC amb dos dosis de 3000 ¿L L-1 amoníac, injectades al inici del tractament i 2 h després (Capítol 6). El tractament amb amoníac controlà una soca de P. digitatum amb un alt nivell de resistència a IMZ. Tots estos tractaments, a diferents nivells, podrien substituir als fungicides de síntesis o augmentar l'eficàcia dels tractaments amb IMZ en el maneig poscollita dels cítrics. El desenvolupament de les podridures verda i blava en les especies y varietats de cítrics més importants comercialment s'avaluà durant quatre campanyes consecutives i es relacionà amb els paràmetres de qualitat de la fruita (Capítol 7). La susceptibilitat dels distints cultivars en ordre creixent fon Nova, Sanguinelli, Ortanique, Lanelate, Navelate, Fortune, Clemenules, Valencia, W. Navel, Oronules, Clemenpons, Marisol, Salustiana, Hernandina, i Nadorcott. Les característiques de la pell foren els paràmetres de qualitat més influents en la susceptibilitat dels cítrics a les pod / Montesinos Herrero, CI. (2016). Evaluation of alternatives to synthetic fungicides to control citrus postharvest diseases [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63662 / TESIS
3

Integrated use of yeast, hot water and potassium silicate treatments for the control of postharvest green mould of citrus and litchi.

Abraham, Abraha Okbasillasie. January 2010 (has links)
There is a growing recognition globally that many agrochemicals are hazardous to humans, animals and the environment. Therefore, there is a need to substitute these chemical products with biological and physical treatments, and to change agronomic practices in order to control pests and diseases in agriculture. The primary objective of this thesis was to develop and test in laboratory, field and commercial packhouses trials as alternative control measures against green mould of citrus (caused by Penicillium digitatum Pers: Fr. Sacc) and Penicillium molds of litchi (caused by several Penicillium). A South African isolate of P. digitatum, isolated from an infected orange fruit, was found to be resistant to imazalil (the standard postharvest fungicide used in South Africa). Sixty yeast and 92 Bacillus strains were screened for their antagonistic activity against this isolate of P. digitatum. None of the yeasts or Bacillus isolates produced a curative action against P. digitatum on oranges. However, yeast Isolate B13 provided excellent preventative control of P. digitatum, superior to all the Bacillus isolates, when it was applied to citrus fruit prior to artificial inoculation with P. digitatum. Electron microscopy showed that yeast Isolate B13 inhibited conidial germination of P. digitatum. For the control of P. digitatum pre-harvest, trees were sprayed with a yeast, Isolate B13, a few months or a few days before harvest. However, this treatment alone proved to be ineffective in providing preventative control of green mould on Valencia oranges. For the control of P. digitatum preharvest, trees were treated with potassium silicate for a full season. Regular potassium silicate treatments resulted in a significant preventative control of P. digitatum infection on both navel and Valencia oranges. Treatment of Eureka lemons with potassium silicate as a postharvest treatment for the control of P. digitatum resulted in reduced disease lesion diameters when applied preventatively or curatively. Electron microscopy showed that potassium silicate inhibited germination of P. digitatum conidia and growth of its mycelium. Hot-water dip treatment at 50-58°C for 60-180 seconds (in increments of 15 seconds), significantly reduced infection development in inoculated wounds of Valencia oranges compared with control fruit treated with tap water, without causing any rind damage. The integration of the yeast, a hot water dip and potassium silicate pre-and postharvest applications provided control of P. digitatum control in multiple packhouse trials. The control achieved by the yeast Isolate B13 or hot-water, and potassium silicate in the packhouse alone was superior or equivalent to that provided by imazalil. A similar study was also carried out to determine possible control measures for Penicillium sp. on litchis. In this study, a total of 23 yeast and 13 Bacillus isolates were obtained from litchi fruit surfaces. Ten yeast and 10 Bacillus isolates that had shown good efficacy against P. digitatum of citrus were added to these for screening against Penicillium sp. of litchis. None of the yeasts or Bacillus isolates produced a curative action against Penicillium sp. infection on litchis. However, several yeast isolates (YL4, YL10, YLH and B13) resulted in reduced severity of the pathogen, when applied preventatively, compared with an untreated control. The yeast isolates were superior to all the Bacillus isolates, when applied to litchis prior to artificial inoculation by Penicillium infection on litchis. Potassium silicate as a postharvest treatment for the control of the pathogen caused reduced lesion diameters when applied preventatively or curatively to naturally infected litchis. The results presented in this thesis highlight the use of biological, physical and agronomic practices singly or in combination as an alternative control strategy against citrus postharvest green mould. This thesis also provides an insight into expanding these strategies, partly or fully, for the control of other postharvest Penicillium infections using litchi as an example. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.

Page generated in 0.0866 seconds