Spelling suggestions: "subject:"classificação dde proteínas"" "subject:"classificação dee proteínas""
1 |
Cadeias estocásticas parcimoniosas com aplicações à classificação e filogenia das seqüências de proteínas. / Parsimonious stochastic chains with applications to classification and phylogeny of protein sequences.Leonardi, Florencia Graciela 19 January 2007 (has links)
Nesta tese apresentamos alguns resultados teóricos e práticos da modelagem de seqüências simbólicas com cadeias estocásticas parcimoniosas. As cadeias estocásticas parcimoniosas, que incluem as cadeias estocásticas de memória variável, constituem uma generalização das cadeias de Markov de alcance fixo. As seqüências simbólicas às quais foram aplicadas as ferramentas desenvolvidas são as cadeias de aminoácidos. Primeiramente, introduzimos um novo algoritmo, chamado de SPST, para selecionar o modelo de cadeia estocástica parcimoniosa mais ajustado a uma amostra de seqüências. Em seguida, utilizamos esse algoritmo para estudar dois importantes problemas da genômica; a saber, a classificação de proteínas em famílias e o estudo da evolução das seqüências biológicas. Finalmente, estudamos a velocidade de convergência de algoritmos relacionados com a estimação de uma subclasse das cadeias estocásticas parcimoniosas, as cadeias estocásticas de memória variável. Assim, generalizamos um resultado prévio de velocidade exponencial de convergência para o algoritmo PST, no caso de cadeias de memória ilimitada. Além disso, obtemos um resultado de velocidade de convergência para uma versão generalizada do Critério da Informação Bayesiana (BIC), também conhecido como Critério de Schwarz. / In this thesis we present some theoretical and practical results, concerning symbolic sequence modeling with parsimonious stochastic chains. Parsimonious stochastic chains, which include variable memory stochastic chains, constitute a generalization of fixed order Markov chains. The symbolic sequences modeled with parsimonious stochastic chains were the sequences of amino acids. First, we introduce a new algorithm, called SPST, to select the model of parsimonious stochastic chain that fits better to a sample of sequences. Then, we use the SPST algorithm to study two important problems of genomics. These problems are the classification of proteins into families and the study of the evolution of biological sequences. Finally, we find upper bounds for the rate of convergence of some algorithms related with the estimation of a subclass of parsimonious stochastic chains; namely, the variable memory stochastic chains. In consequence, we generalize a previous result about the exponential rate of convergence of the PST algorithm, in the case of unbounded variable memory stochastic chains. On the other hand, we prove a result about the rate of convergence of a generalized version of the Bayesian Information Criterion (BIC), also known as Schwarz\' Criterion.
|
2 |
Cadeias estocásticas parcimoniosas com aplicações à classificação e filogenia das seqüências de proteínas. / Parsimonious stochastic chains with applications to classification and phylogeny of protein sequences.Florencia Graciela Leonardi 19 January 2007 (has links)
Nesta tese apresentamos alguns resultados teóricos e práticos da modelagem de seqüências simbólicas com cadeias estocásticas parcimoniosas. As cadeias estocásticas parcimoniosas, que incluem as cadeias estocásticas de memória variável, constituem uma generalização das cadeias de Markov de alcance fixo. As seqüências simbólicas às quais foram aplicadas as ferramentas desenvolvidas são as cadeias de aminoácidos. Primeiramente, introduzimos um novo algoritmo, chamado de SPST, para selecionar o modelo de cadeia estocástica parcimoniosa mais ajustado a uma amostra de seqüências. Em seguida, utilizamos esse algoritmo para estudar dois importantes problemas da genômica; a saber, a classificação de proteínas em famílias e o estudo da evolução das seqüências biológicas. Finalmente, estudamos a velocidade de convergência de algoritmos relacionados com a estimação de uma subclasse das cadeias estocásticas parcimoniosas, as cadeias estocásticas de memória variável. Assim, generalizamos um resultado prévio de velocidade exponencial de convergência para o algoritmo PST, no caso de cadeias de memória ilimitada. Além disso, obtemos um resultado de velocidade de convergência para uma versão generalizada do Critério da Informação Bayesiana (BIC), também conhecido como Critério de Schwarz. / In this thesis we present some theoretical and practical results, concerning symbolic sequence modeling with parsimonious stochastic chains. Parsimonious stochastic chains, which include variable memory stochastic chains, constitute a generalization of fixed order Markov chains. The symbolic sequences modeled with parsimonious stochastic chains were the sequences of amino acids. First, we introduce a new algorithm, called SPST, to select the model of parsimonious stochastic chain that fits better to a sample of sequences. Then, we use the SPST algorithm to study two important problems of genomics. These problems are the classification of proteins into families and the study of the evolution of biological sequences. Finally, we find upper bounds for the rate of convergence of some algorithms related with the estimation of a subclass of parsimonious stochastic chains; namely, the variable memory stochastic chains. In consequence, we generalize a previous result about the exponential rate of convergence of the PST algorithm, in the case of unbounded variable memory stochastic chains. On the other hand, we prove a result about the rate of convergence of a generalized version of the Bayesian Information Criterion (BIC), also known as Schwarz\' Criterion.
|
3 |
Topological data analysis: applications in machine learning / Análise topológica de dados: aplicações em aprendizado de máquinaCalcina, Sabrina Graciela Suárez 05 December 2018 (has links)
Recently computational topology had an important development in data analysis giving birth to the field of Topological Data Analysis. Persistent homology appears as a fundamental tool based on the topology of data that can be represented as points in metric space. In this work, we apply techniques of Topological Data Analysis, more precisely, we use persistent homology to calculate topological features more persistent in data. In this sense, the persistence diagrams are processed as feature vectors for applying Machine Learning algorithms. In order to classification, we used the following classifiers: Partial Least Squares-Discriminant Analysis, Support Vector Machine, and Naive Bayes. For regression, we used Support Vector Regression and KNeighbors. Finally, we will give a certain statistical approach to analyze the accuracy of each classifier and regressor. / Recentemente a topologia computacional teve um importante desenvolvimento na análise de dados dando origem ao campo da Análise Topológica de Dados. A homologia persistente aparece como uma ferramenta fundamental baseada na topologia de dados que possam ser representados como pontos num espaço métrico. Neste trabalho, aplicamos técnicas da Análise Topológica de Dados, mais precisamente, usamos homologia persistente para calcular características topológicas mais persistentes em dados. Nesse sentido, os diagramas de persistencia são processados como vetores de características para posteriormente aplicar algoritmos de Aprendizado de Máquina. Para classificação, foram utilizados os seguintes classificadores: Análise de Discriminantes de Minimos Quadrados Parciais, Máquina de Vetores de Suporte, e Naive Bayes. Para a regressão, usamos a Regressão de Vetores de Suporte e KNeighbors. Finalmente, daremos uma certa abordagem estatística para analisar a precisão de cada classificador e regressor.
|
Page generated in 0.0775 seconds