• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estrutura e estabilidade de módulos de persistência / Structure and stability of persistence modules

Silva, Fernando Gasparotto da [UNESP] 14 August 2017 (has links)
Submitted by FERNANDO GASPAROTTO DA SILVA null (fernando.gaspt@hotmail.com) on 2017-09-13T20:17:28Z No. of bitstreams: 1 Gasparotto da Silva, F. - Estrutura e estabilidade de módulos de persistência.pdf: 1909578 bytes, checksum: 4ee1ae3d4306638fe4afbf721614e688 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-09-15T13:38:44Z (GMT) No. of bitstreams: 1 silva_fg_me_sjrp.pdf: 1909578 bytes, checksum: 4ee1ae3d4306638fe4afbf721614e688 (MD5) / Made available in DSpace on 2017-09-15T13:38:44Z (GMT). No. of bitstreams: 1 silva_fg_me_sjrp.pdf: 1909578 bytes, checksum: 4ee1ae3d4306638fe4afbf721614e688 (MD5) Previous issue date: 2017-08-14 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O intuito deste trabalho é de integrar os aspectos aplicado e teórico da Homologia Persistente, uma ferramenta popular da Topological Data Analysis (TDA). Para isso, são apresentados e demonstrados os resultados fundamentais da teoria embasada na topologia algébrica que permitem o desenvolvimento de algoritmos e paradigmas computacionais para obter diagramas de persistência. Dessa forma, iniciaremos explorando como decodificar as informações contidas em um módulo de persistência, entendendo os conceitos de multiconjuntos, módulos de persistência e cálculos Quiver. Em seguida, o caminho contrário será explorado, onde os dados são codificados em diagramas de persistência a fim de extrair suas características topológicas, aprofundando os conceitos de funções de Morse, Homologia Persistente, diagramas de persistência, dualidade e simetria, bem como estabilidade. Por último, encerramos demonstrando duas possíveis aplicações da teoria no âmbito computacional no campo da Biologia. / The goal of this work is to integrate applied and theoretical aspects of Persistence Homology, a popular tool in Topological Data Analysis (TDA). For this, we present and prove fundamental theoretical results based on algebraic topology, which allow us to develop algorithms and computational paradigms to obtain persistence diagrams. In this way, we start exploring how to decode the information contained in a persistence module, understanding the concepts of multiset, persistence modules and Quiver alculations. Then, the opposite path will be explored, where the data are encoded in persistence diagrams in order to extract their topological characteristics, going deep into the concepts of Morse functions, persistent homology, persistence diagrams, duality and symmetry, as well as stability. Finally, we conclude with two possible applications, one from computational theory, and the second one in the field of biology. / CNPq: 135622/2015-8
2

Discrete Morse complex of images = algorithms, modeling and applications = Complexo discreto de Morse para imagens: algoritmos, modelagem e aplicações / Complexo discreto de Morse para imagens : algoritmos, modelagem e aplicações

Silva, Ricardo Dutra da, 1982- 11 May 2013 (has links)
Orientador: Hélio Pedrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T00:14:20Z (GMT). No. of bitstreams: 1 Silva_RicardoDutrada_D.pdf: 13549105 bytes, checksum: 3d49e5116a70a72601ba4cc3b3c85762 (MD5) Previous issue date: 2013 / Resumo: A Teoria de Morse é importante para o estudo da topologia em funções escalares como elevação de terrenos e dados provenientes de simulações físicas, a qual relaciona a topologia de uma função com seus pontos críticos. A teoria contínua foi adaptada para dados discretos através de construções como os complexos de Morse-Smale e o complexo discreto de Morse. Complexos de Morse têm sido aplicados em processamento de imagens, no entanto, ainda existem desafios envolvendo algoritmos e considerações práticas para a computação e modelagem dos complexos para imagens. Complexos de Morse podem ser usados como um meio de definir a conexão entre pontos de interesse em imagens. Normalmente, pontos de interesse são considerados como elementos independentes descritos por informação local. Tal abordagem apresenta limitações uma vez que informação local pode não ser suficiente para descrever certas regiões da imagem. Pontos de mínimo e máximo são comumente utilizados como pontos de interesse em imagens, os quais podem ser obtidos a partir dos complexos de Morse, bem como sua conectividade no espaço de imagem. Esta tese apresenta uma abordagem dirigida por algoritmos e estruturas de dados para computar o complexo de Morse discreto em imagens bidimensionais. A construção é ótima e permite fácil manipulação do complexo. Resultados teóricos e experimentais são apresentados para mostrar que o método é eficaz. Experimentos realizados incluem a computação de homologia persistente e hierarquias de complexos sobre dados de elevação de terrenos. Outra contribuição é a proposição de um operador topológico, chamado Contexto Local de Morse, computado sobre complexos de Morse, para extrair vizinhanças de pontos de interesse para explorar a informação estrutural de imagens. O contexto local de Morse é usado no desenvolvimento de um algoritmo que auxilia a redução do número de casamentos incorretos entre pontos de interesse e na obtenção de uma medida de confiança para tais correspondências. A abordagem proposta é testada em pares de imagens sintéticas e de imagens subaquáticas, para as quais métodos existentes podem obter muitas correspondências incorretas / Abstract: The Morse theory is important for studying the topology of scalar functions such as elevation of terrains and data from physical simulations, which relates the topology of a function to critical points. The smooth theory has been adapted to discrete data through constructions such as the Morse-Smale complexes and the discrete Morse complex. Morse complexes have been applied to image processing, however, there are still challenges involving algorithms and practical considerations for computation and modeling of the complexes. Morse complexes can be used as means of defining the connectedness of interest points in images. Usually, interest points are considered as independent elements described by local information. Such an approach has its limitations since local information may not suffice for describing certain image regions. Minimum and maximum points are widely used as interest points in images, which can be obtained from Morse complexes, as well as their connectivity in the image space. This thesis presents an algorithmic and data structure driven approach to computing the discrete Morse complex of 2-dimensional images. The construction is optimal and allows easy manipulation of the complex. Theoretical and applied results are presented to show the effectiveness of the method. Applied experiments include the computation of persistent homology and hierarchies of complexes over elevation terrain data. Another contribution is the proposition of a topological operator, called Local Morse Context (LMC), computed over Morse complexes, for extracting neighborhoods of interest points to explore the structural information in images. The LMC is used in the development of a matching algorithm, which helps reducing the number of incorrect matches between images and obtaining a confidence measure of whether a correspondence is correct or incorrect. The approach is tested in synthetic and challenging underwater stereo pairs of images, for which available methods may obtain many incorrect correspondences / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
3

Topologia computacional para análise de série temporal / Computational topology for time series analysis

Miranda, Vanderlei Luiz Daneluz 13 March 2019 (has links)
Mudanças de padrão são variações nos dados da série temporal. Tais mudanças podem representar transições que ocorrem entre estados. A análise de dados topológicos (TDA) permite uma caracterização de dados de séries temporais obtidos a partir de sistemas dinâmicos complexos. Neste trabalho, apresentamos uma técnica de detecção de mudança de padrão baseada em TDA. Especificamente, a partir de uma determinada série temporal, dividimos o sinal em janelas deslizantes sem sobreposição e para cada janela calculamos a homologia persistente, ou seja, o barcode associado. A partir desse barcode, o intervalo médio e a entropia persistente são calculados e plotados em relação à duração do sinal. Resultados experimentais em conjuntos de dados reais e artificiais mostram bons resultados do método proposto: 1) Detecta mudança de padrões identificando a mudança no intervalo médio e calculando a entropia persistente para os barcodes gerados pelo conjunto de dados de entrada. 2) Mostra qualitativamente quão sensível é a escolha do método de filtragem para evidenciar características topológicas do espaço original sob exame. Isto é conseguido usando duas filtragens: uma filtragem métrica e uma do tipo lower-star. 3) Variando o tamanho da janela, o método pode caracterizar a presença de estruturas locais do conjunto de dados, como o período de convulsão nos sinais EEG. 4) O método proposto é capaz de caracterizar a complexidade pela medida de entropia persistente dos barcodes, uma medida de entropia baseada na definição de entropia de Shannon. Além disso, neste trabalho, mostramos a evidência de mudanças de complexidade associadas a um período de convulsão de um sinal de EEG / Pattern changings are variations in time series data. Such changes may represent transitions that occur between states. Topological data analysis (TDA) allows characterization of time-series data obtained from complex dynamical systems. In this work, we present a pattern changing detection technique based on TDA. Specifically, starting from a given time series, we divide the signal in slicing windows with no overlapping and for each window we calculate the persistent homology, i.e., the associated barcode. From the barcode the average interval size and persistent entropy are calculated and plotted against the signal duration. Experimental results on artificial and real data sets show good results of the proposed method: 1) It detects pattern changing by identifying the change in the average interval size and calculated persistent entropy for the barcodes generated by the input data set. 2) It shows qualitatively how sensible the choice of filtration method is to evidence topological features of the original space under examination. This is accomplished by using two filtrations: a metric and a lower-star filtration. 3) By varying the slice window size, the method can characterize the presence of local structures of the data set such as the seizure period in EEG signals. 4) The proposed method can characterize complexity by the measure persistent entropy for barcodes, an entropy measure based on Shannon´s entropy definition. Moreover, in this work, we show the evidence of complexity changes associated with a seizure period of an EEG signal
4

Topological data analysis: applications in machine learning / Análise topológica de dados: aplicações em aprendizado de máquina

Calcina, Sabrina Graciela Suárez 05 December 2018 (has links)
Recently computational topology had an important development in data analysis giving birth to the field of Topological Data Analysis. Persistent homology appears as a fundamental tool based on the topology of data that can be represented as points in metric space. In this work, we apply techniques of Topological Data Analysis, more precisely, we use persistent homology to calculate topological features more persistent in data. In this sense, the persistence diagrams are processed as feature vectors for applying Machine Learning algorithms. In order to classification, we used the following classifiers: Partial Least Squares-Discriminant Analysis, Support Vector Machine, and Naive Bayes. For regression, we used Support Vector Regression and KNeighbors. Finally, we will give a certain statistical approach to analyze the accuracy of each classifier and regressor. / Recentemente a topologia computacional teve um importante desenvolvimento na análise de dados dando origem ao campo da Análise Topológica de Dados. A homologia persistente aparece como uma ferramenta fundamental baseada na topologia de dados que possam ser representados como pontos num espaço métrico. Neste trabalho, aplicamos técnicas da Análise Topológica de Dados, mais precisamente, usamos homologia persistente para calcular características topológicas mais persistentes em dados. Nesse sentido, os diagramas de persistencia são processados como vetores de características para posteriormente aplicar algoritmos de Aprendizado de Máquina. Para classificação, foram utilizados os seguintes classificadores: Análise de Discriminantes de Minimos Quadrados Parciais, Máquina de Vetores de Suporte, e Naive Bayes. Para a regressão, usamos a Regressão de Vetores de Suporte e KNeighbors. Finalmente, daremos uma certa abordagem estatística para analisar a precisão de cada classificador e regressor.

Page generated in 0.1302 seconds