Spelling suggestions: "subject:"topologia computacional"" "subject:"ropologia computacional""
1 |
[en] SCALABLE TOPOLOGICAL DATA{STRUCTURES FOR 2 AND 3 MANIFOLDS / [pt] ESTRUTURAS DE DADOS TOPOLÓGICAS ESCALONÁVEIS PARA VARIEDADES DE DIMENSÃO 2 E 3MARCOS DE OLIVEIRA LAGE FERREIRA 24 April 2006 (has links)
[pt] Pesquisas na área de estrutura de dados são fundamentais
para aumentar a generalidade e eficiência computacional da
representacão de modelos geometricos. Neste trabalho,
apresentamos duas estruturas de dados topológicas
escalonáveis, uma para superfícies triânguladas, chamada
CHE (Compact Half--Edge), e outra para malhas de
tetraedros, chamada CHF (Compact Half--Face). Tais
estruturas são compostas de diferentes níveis, que nos
possibilitam alterar a quantidade de dados armazenados com
objetivo de melhorar sua eficiência computacional. O uso
de APIs baseadas no conceito de objeto, e de haran»ca de
classes, possibilitam uma interface única para cada função
em todos os níveis das estruturas. A CHE e a CHF requerem
pouca memória e são simples de implementar já que
substituem o uso de ponteiros pelo de contêineres
genéricos e regras aritméticas. / [en] Research in data structure area are essential to increase
the generality and
computational effciency of geometric models`
representation. In this work,
we present two new scalable topological data structures,
one for triangulated
surfaces, called CHE (Compact Half { Edge ), and the
another for tetrahedral
meshes, called CHF (Compact Half { Face ). Such structures
are composed of
different levels, that enable us to modify the amount of
data stored with the
objective to improve its computational effciency. The use
of APIs based in
the object concept and class inheritance, makes possible
an unique interface
for each function at any level. CHE and CHF requires very
few memory and
are simple to implement since they substitute the use of
pointers by generic
containeres and arithmetical rules.
|
2 |
Discrete Morse complex of images = algorithms, modeling and applications = Complexo discreto de Morse para imagens: algoritmos, modelagem e aplicações / Complexo discreto de Morse para imagens : algoritmos, modelagem e aplicaçõesSilva, Ricardo Dutra da, 1982- 11 May 2013 (has links)
Orientador: Hélio Pedrini / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-24T00:14:20Z (GMT). No. of bitstreams: 1
Silva_RicardoDutrada_D.pdf: 13549105 bytes, checksum: 3d49e5116a70a72601ba4cc3b3c85762 (MD5)
Previous issue date: 2013 / Resumo: A Teoria de Morse é importante para o estudo da topologia em funções escalares como elevação de terrenos e dados provenientes de simulações físicas, a qual relaciona a topologia de uma função com seus pontos críticos. A teoria contínua foi adaptada para dados discretos através de construções como os complexos de Morse-Smale e o complexo discreto de Morse. Complexos de Morse têm sido aplicados em processamento de imagens, no entanto, ainda existem desafios envolvendo algoritmos e considerações práticas para a computação e modelagem dos complexos para imagens. Complexos de Morse podem ser usados como um meio de definir a conexão entre pontos de interesse em imagens. Normalmente, pontos de interesse são considerados como elementos independentes descritos por informação local. Tal abordagem apresenta limitações uma vez que informação local pode não ser suficiente para descrever certas regiões da imagem. Pontos de mínimo e máximo são comumente utilizados como pontos de interesse em imagens, os quais podem ser obtidos a partir dos complexos de Morse, bem como sua conectividade no espaço de imagem. Esta tese apresenta uma abordagem dirigida por algoritmos e estruturas de dados para computar o complexo de Morse discreto em imagens bidimensionais. A construção é ótima e permite fácil manipulação do complexo. Resultados teóricos e experimentais são apresentados para mostrar que o método é eficaz. Experimentos realizados incluem a computação de homologia persistente e hierarquias de complexos sobre dados de elevação de terrenos. Outra contribuição é a proposição de um operador topológico, chamado Contexto Local de Morse, computado sobre complexos de Morse, para extrair vizinhanças de pontos de interesse para explorar a informação estrutural de imagens. O contexto local de Morse é usado no desenvolvimento de um algoritmo que auxilia a redução do número de casamentos incorretos entre pontos de interesse e na obtenção de uma medida de confiança para tais correspondências. A abordagem proposta é testada em pares de imagens sintéticas e de imagens subaquáticas, para as quais métodos existentes podem obter muitas correspondências incorretas / Abstract: The Morse theory is important for studying the topology of scalar functions such as elevation of terrains and data from physical simulations, which relates the topology of a function to critical points. The smooth theory has been adapted to discrete data through constructions such as the Morse-Smale complexes and the discrete Morse complex. Morse complexes have been applied to image processing, however, there are still challenges involving algorithms and practical considerations for computation and modeling of the complexes. Morse complexes can be used as means of defining the connectedness of interest points in images. Usually, interest points are considered as independent elements described by local information. Such an approach has its limitations since local information may not suffice for describing certain image regions. Minimum and maximum points are widely used as interest points in images, which can be obtained from Morse complexes, as well as their connectivity in the image space. This thesis presents an algorithmic and data structure driven approach to computing the discrete Morse complex of 2-dimensional images. The construction is optimal and allows easy manipulation of the complex. Theoretical and applied results are presented to show the effectiveness of the method. Applied experiments include the computation of persistent homology and hierarchies of complexes over elevation terrain data. Another contribution is the proposition of a topological operator, called Local Morse Context (LMC), computed over Morse complexes, for extracting neighborhoods of interest points to explore the structural information in images. The LMC is used in the development of a matching algorithm, which helps reducing the number of incorrect matches between images and obtaining a confidence measure of whether a correspondence is correct or incorrect. The approach is tested in synthetic and challenging underwater stereo pairs of images, for which available methods may obtain many incorrect correspondences / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
|
3 |
[en] GEOMETRIC DISCRETE MORSE COMPLEXES / [pt] COMPLEXOS DE MORSE DISCRETOS E GEOMÉTRICOSTHOMAS LEWINER 26 October 2005 (has links)
[pt] A geometria diferencial descreve de maneira intuitiva os
objetos suaves no
espaço. Porém, com a evolução da modelagem geométrica por
computador,
essa ferramenta se tornou ao mesmo tempo necessária e
difícil de se
descrever no mundo discreto. A teoria de Morse ficou
importante pela
ligação que ela cria entre a topologia e a geometria
diferenciais. Partindo
de um ponto de vista mais combinatório, a teoria de Morse
discreta de
Forman liga de forma rigorosa os objetos discretos à
topologia deles, abrindo
essa teoria para estruturas discretas. Este trabalho
propõe uma definição
construtiva de funções de Morse geométricas no mundo
discreto e do
complexo de Morse-Smale correspondente, onde a geometria é
definida como
a amostragem de uma função suave nos vértices da estrutura
discreta. Essa
construção precisa de cálculos de homologia que se
tornaram por si só uma
melhoria significativa dos métodos existentes. A
decomposição de Morse-
Smale resultante pode ser eficientemente computada e usada
para aplicações
de cálculo da persistência, geração de grafos de Reeb,
remoção de ruído e
mais. . . / [en] Differential geometry provides an intuitive way of
understanding smooth
objects in the space. However, with the evolution of
geometric modeling
by computer, this tool became both necessary and difficult
to transpose to
the discrete setting. The power of Morse theory relies on
the link it created
between differential topology and geometry. Starting from a
combinatorial
point of view, Forman´s discrete Morse theory relates
rigorously discrete
objects to their topology, opening Morse theory to discrete
structures.
This work proposes a constructive definition of geometric
discrete Morse
functions and their corresponding discrete Morse-Smale
complexes, where
the geometry is defined as a smooth function sampled on the
vertices of the
discrete structure. This construction required some
homology computations
that turned out to be a significant improvement over
existing methods
by itself. The resulting Morse-Smale decomposition can then
be efficiently
computed, and used for applications to persistence
computation, Reeb graph
generation, noise removal. . .
|
4 |
[en] ANALYSIS OF MORSE MATCHINGS: PARAMETERIZED COMPLEXITY AND STABLE MATCHING / [pt] ANÁLISE DE CASAMENTOS DE MORSE: COMPLEXIDADE PARAMETRIZADA E CASAMENTO ESTÁVEL16 December 2021 (has links)
[pt] A teoria de Morse relaciona a topologia de um espaço aos elementos críticos de uma função escalar definida nele. Isso vale tanto para a teoria clássica quanto para a versão discreta proposta por Forman em 1995. Essas teorias de Morse permitem caracterizar a topologia do espaço a partir de funções definidas nele, mas também permite estudar funções a partir de construções tipológicas derivadas dela, como por exemplo o complexo de Morse-Smale. Apesar da teoria de Morse discreta se aplicar para complexos celulares gerais de forma inteiramente combinatória, o que torna a teoria particularmente bem adaptada para o computador, as funções usadas na teoria não são amostragens de funções contínuas, mas casamentos especiais no grafo que codifica as adjacências no complexo celular, chamadas de casamentos de Morse. Quando usar essa teoria para estudar um espaço topológico, procura- se casamentos de Morse ótimos, i.e. com o menor número possível de elementos críticos, para obter uma informação topológica do complexo sem redundância. Na primeira parte desta tese, investiga-se a complexidade parametrizada de encontrar esses casamentos de Morse ótimos.
Por um lado, prova-se que o problema ERASABILITY, um problema fortemente relacionado à
encontrar casamentos de Morse ótimos, é W [P ]-completo. Por outro lado, um algoritmo é proposto para calcular casamentos de Morse ótimos em triangulações de 3-variedades, que é FPT no parâmetro do tree- width de seu grafo dual. Quando usar a teoria de Morse discreta para estudar uma função escalar definida no espaço, procura-se casamentos de Morse que capturam a informação geométrica dessa função. Na segunda parte é proposto uma construção de casamentos de Morse baseada em casamentos estáveis. As garantias teóricas sobre a relação desses casamentos com a geometria são elaboradas a partir de provas surpreendentemente simples que aproveitam da caracterização local do casamento estável. A construção e as suas garantias funcionam em qualquer dimensão. Finalmente, resultados mais fortes são obtidos quando a função for suave discreta, uma noção definida nesta tese. / [en] Morse theory relates the topology of a space to the critical elements of a
scalar function defined on it. This applies in both the classical theory and
a discrete version of it defined by Forman in 1995. Those Morse theories
permit to characterize a topological space from functions defined on it, but
also to study functions based on topological constructions it implies, such as
the Morse-Smale complex. While discrete Morse theory applies on general
cell complexes in an entirely combinatorial manner, which makes it suitable
for computation, the functions it considers are not sampling of continuous
functions, but special matchings in the graph encoding the cell complex
adjacencies, called Morse matchings.
When using this theory to study a topological space, one looks for optimal
Morse matchings, i.e. one with the smallest number of critical elements, to
get highly succinct topological information about the complex. The first
part of this thesis investigates the parameterized complexity of finding such
optimal Morse matching. On the one hand the Erasability problem, a
closely related problem to finding optimal Morse matchings, is proven to be
W[P]-complete. On the other hand, an algorithm is proposed for computing
optimal Morse matchings on triangulations of 3-manifolds which is fixed parameter
tractable in the tree-width of its dual graph.
When using discrete Morse theory to study a scalar function defined on
the space, one looks for a Morse matching that captures the geometric
information of that function. The second part of this thesis introduces a
construction of Morse matchings based on stable matchings. The theoretical
guarantees about the relation of such matchings to the geometry are
established through surprisingly simple proofs that benefits from the local
characterization of the stable matching. The construction and its guarantees
work in any dimension. Finally stronger results are obtained if the function
is discrete smooth on the complex, a notion defined in this thesis.
|
Page generated in 0.073 seconds