• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriétés et extensions de la classification de variables autour de composantes latentes. Application en évaluation sensorielle

Sahmer, Karin 30 October 2006 (has links) (PDF)
Dans ce travail, les propriétés de la méthode de classification de variables autour de composantes latentes (CLV) sont étudiées. Un modèle statistique pour cette méthode est formulé. Ce modèle est particulièrement adapté aux données issues d'un profil sensoriel. Il permet de jeter un nouvel éclairage sur la méthode CLV. Le critère de classification s'écrit en fonction des paramètres du modèle. Il est démontré que, sous des conditions peu contraignantes, l'algorithme hiérarchique retrouve correctement les groupes de variables tandis que l'algorithme de partitionnement dépend de l'initialisation. Le comportement de la méthode CLV lors de la classification sur la base d'un échantillon est analysé à l'aide d'une étude de simulations. Il s'avère que la performance de CLV est comparable à celle de méthodes connues telles que la méthode Varclus du logiciel SAS. Finalement, deux procédures automatiques pour la détermination du nombre de groupes sont proposées et comparées.
2

Construction d'échelles d'items unidimensionnelles en qualité de vie

Hardouin, Jean-Benoit 14 November 2005 (has links) (PDF)
Une échelle de qualité de vie doit vérifier différentes propriétés. L'unidimensionnalité est aujourd'hui communément admise : une échelle doit mesurer un concept unique. La simplicité d'utilisation de l'instrument de mesure est, elle aussi, importante. A ce titre le Rasch est intéressant puisque ce modèle est sous-jacent à toute notion de score non pondéré. Ce travail s'inscrit donc dans le cadre de la sélection d'items vérifiant un modèle de Rasch. Un modèle multidimensionnel est proposé : le modèle marginalement exhaustif de Rasch (MMSRM), pour lequel, chaque dimension garde les propriétés psychométriques du modèle de Rasch. Trois méthodes basées sur l'adéquation d'un tel modèle aux données sont proposées, et comparées par simulations à des procédures existantes. Une seconde partie du travail concerne le développement de programmes pour utiliser des modèles psychométriques sous deux logiciels statistiques : SAS et Stata.
3

Contributions à la réduction de dimension

Kuentz, Vanessa 20 November 2009 (has links)
Cette thèse est consacrée au problème de la réduction de dimension. Cette thématique centrale en Statistique vise à rechercher des sous-espaces de faibles dimensions tout en minimisant la perte d'information contenue dans les données. Tout d'abord, nous nous intéressons à des méthodes de statistique multidimensionnelle dans le cas de variables qualitatives. Nous abordons la question de la rotation en Analyse des Correspondances Multiples (ACM). Nous définissons l'expression analytique de l'angle de rotation planaire optimal pour le critère de rotation choisi. Lorsque le nombre de composantes principales retenues est supérieur à deux, nous utilisons un algorithme de rotations planaires successives de paires de facteurs. Nous proposons également différents algorithmes de classification de variables qualitatives qui visent à optimiser un critère de partitionnement basé sur la notion de rapports de corrélation. Un jeu de données réelles illustre les intérêts pratiques de la rotation en ACM et permet de comparer empiriquement les différents algorithmes de classification de variables qualitatives proposés. Puis nous considérons un modèle de régression semiparamétrique, plus précisément nous nous intéressons à la méthode de régression inverse par tranchage (SIR pour Sliced Inverse Regression). Nous développons une approche basée sur un partitionnement de l'espace des covariables, qui est utilisable lorsque la condition fondamentale de linéarité de la variable explicative est violée. Une seconde adaptation, utilisant le bootstrap, est proposée afin d'améliorer l'estimation de la base du sous-espace de réduction de dimension. Des résultats asymptotiques sont donnés et une étude sur des données simulées démontre la supériorité des approches proposées. Enfin les différentes applications et collaborations interdisciplinaires réalisées durant la thèse sont décrites. / This thesis concentrates on dimension reduction approaches, that seek for lower dimensional subspaces minimizing the lost of statistical information. First we focus on multivariate analysis for categorical data. The rotation problem in Multiple Correspondence Analysis (MCA) is treated. We give the analytic expression of the optimal angle of planar rotation for the chosen criterion. If more than two principal components are to be retained, this planar solution is used in a practical algorithm applying successive pairwise planar rotations. Different algorithms for the clustering of categorical variables are also proposed to maximize a given partitioning criterion based on correlation ratios. A real data application highlights the benefits of using rotation in MCA and provides an empirical comparison of the proposed algorithms for categorical variable clustering. Then we study the semiparametric regression method SIR (Sliced Inverse Regression). We propose an extension based on the partitioning of the predictor space that can be used when the crucial linearity condition of the predictor is not verified. We also introduce bagging versions of SIR to improve the estimation of the basis of the dimension reduction subspace. Asymptotic properties of the estimators are obtained and a simulation study shows the good numerical behaviour of the proposed methods. Finally applied multivariate data analysis on various areas is described.
4

Méthodes de réduction de dimension pour la construction d'indicateurs de qualité de vie / Dimension reduction methods to construct quality of life indicators

Labenne, Amaury 20 November 2015 (has links)
L’objectif de cette thèse est de développer et de proposer de nouvellesméthodes de réduction de dimension pour la construction d’indicateurs composites dequalité de vie à l’échelle communale. La méthodologie statistique développée met l’accentsur la prise en compte de la multidimensionnalité du concept de qualité de vie, avecune attention particulière sur le traitement de la mixité des données (variables quantitativeset qualitatives) et l’introduction des conditions environnementales. Nous optonspour une approche par classification de variables et pour une méthode multi-tableaux(analyse factorielle multiple pour données mixtes). Ces deux méthodes permettent deconstruire des indicateurs composites que nous proposons comme mesure des conditionsde vie à l’échelle communale. Afin de faciliter l’interprétation des indicateurscomposites construits, une méthode de sélection de variables de type bootstrap estintroduite en analyse factorielle multiple. Enfin nous proposons la méthode hclustgeode classification d’observations qui intègre des contraintes de proximité géographiqueafin de mieux appréhender la spatialité des phénomènes mis en jeu. / The purpose of this thesis is to develop and suggest new dimensionreduction methods to construct composite indicators on a municipal scale. The developedstatistical methodology highlights the consideration of the multi-dimensionalityof the quality of life concept, with a particular attention on the treatment of mixeddata (quantitative and qualitative variables) and the introduction of environmentalconditions. We opt for a variable clustering approach and for a multi-table method(multiple factorial analysis for mixed data). These two methods allow to build compositeindicators that we propose as a measure of living conditions at the municipalscale. In order to facilitate the interpretation of the created composite indicators, weintroduce a method of selections of variables based on a bootstrap approach. Finally,we suggest the clustering of observations method, named hclustgeo, which integratesgeographical proximity constraints in the clustering procedure, in order to apprehendthe spatiality specificities better.

Page generated in 0.1542 seconds