• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of nano-particles on crystalline orientation in polypropylene/clay nanocomposite films

Woods, Courtney G., January 2003 (has links) (PDF)
Thesis (M.S. in Ch. E.)--School of Chemical Engineering, Georgia Institute of Technology, 2004. Directed by John D. Muzzy. / Includes bibliographical references.
2

Role of nano-particles on crystalline orientation in polypropylene/clay nanocomposite films

Woods, Courtney G. 01 December 2003 (has links)
No description available.
3

Polymer-organoclay nanocomposites by melt processing

Cui, Lili, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2009. / Title from PDF title page (University of Texas Digital Repository, viewed on September 9, 2009). Vita. Includes bibliographical references.
4

Polymer-organoclay nanocomposites by melt processing

Cui, Lili, 1977- 16 October 2012 (has links)
Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefinorganoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the ionic units on the polymer chain provide a more favorable interaction between the polymer matrix and the organoclay compared to acid units and, thus, lead to better dispersion of the clay particles. It was determined that surfactants whose structure lead to more shielding of the silicate surface result in improved levels of exfoliation in all the above mentioned unmodified and modified polyolefin based nanocomposites. / text
5

Synthesis of clay-based catalysts for bioethanol conversion

Shabani, Juvet Malonda January 2016 (has links)
Thesis (MTech (Chemical Engineering))--Cape Peninsula University of Technology, 2016. / For decades, clays have been applicable as commercial catalysts mostly for cracking in petroleum industries. Clays are also used for development of useful catalysts for various other industrial applications. Hence, this work was aimed to synthesize clay-based catalysts from clay minerals (Kaolin, bentonite and talc) that will be active for the conversion of bioethanol to fuel hydrocarbons. Catalyst characterisation techniques employed on the samples produced in this work include the Energy Dispersive Spectroscopy (EDS), Scanning Electron Microscopy (SEM) and the X-Ray Diffraction pattern (XRD). All catalytic reactions were carried out in a fixed bed reactor (at fixed reaction condition of 6 hour and 350 ⁰C) and corresponding reaction products (liquid and gaseous) were analysed through a Gas Chromatograph- Flame Ionisation Detector (GC-FID) and Gas Chromatograph Mass Spectrometer (GC/MS). The activity of clays in their non-modified state was studied and they were all found active for bioethanol conversion to hydrocarbons. Bentonite was the most active catalyst with bioethanol of 84.95 % and this through subsequent beneficiation and acid-modification approach, led to increased bioethanol conversion of 87.3 %. EDS/SEM characterisation of the catalyst in line to the above modification and increased catalyst activity, revealed that the structural morphology of bentonite and the concentration of basic structural elements (in terms of Si/Al ratio) was increased.

Page generated in 0.215 seconds