Spelling suggestions: "subject:"widewidth"" "subject:"bitwidth""
1 |
Graph Decompositions and Monadic Second Order LogicAdler, Jonathan D 27 April 2009 (has links)
A tree decomposition is a tool which allows for analysis of the underlying tree structure of graphs which are not trees. Given a class of graphs with bounded tree width, many NP-complete problems can be computed in linear time for graphs in the class. Clique width of a graph G is a measure of the number of labels required to construct G using several particular graph operations. For any integer k, both the class of graphs with tree width at most k and the class of graphs with clique width at most k have a decidable monadic second order theory. In this paper we explore some recent results in applying these graph measures and their relation to monadic second order logic.
|
2 |
Graph Decomposition Using Node LabelsJohansson, Öjvind January 2001 (has links)
No description available.
|
3 |
Graph Decomposition Using Node LabelsJohansson, Öjvind January 2001 (has links)
No description available.
|
4 |
Výpočetní a strukturální otázky intervalových grafů a jejich variant / Computational and structural apects of interval graphs and their variantsNovotná, Jana January 2019 (has links)
Interval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs-a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a much richer class of graphs. In particular, mixed unit interval graphs are not claw-free, compared to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs. The original bubble model was used by Boyaci, Ekim, and Shalom for proving the polynomiality of the MaxCut problem on unit interval graphs. However, we found a significant mistake in the proof which seems to be hardly repairable. Moreover, we demonstrate advantages of such model by providing a subexponential-time algorithm solving the MaxCut problem on mixed unit interval graphs using our extended version of the bubble model. In addition, it gives us a polynomial-time...
|
5 |
Efficient parameterized algorithms on structured graphsNelles, Florian 27 July 2023 (has links)
In der klassischen Komplexitätstheorie werden worst-case Laufzeiten von Algorithmen typischerweise einzig abhängig von der Eingabegröße angegeben. In dem Kontext der parametrisierten Komplexitätstheorie versucht man die Analyse der Laufzeit dahingehend zu verfeinern, dass man zusätzlich zu der Eingabengröße noch einen Parameter berücksichtigt, welcher angibt, wie strukturiert die Eingabe bezüglich einer gewissen Eigenschaft ist. Ein parametrisierter Algorithmus nutzt dann diese beschriebene Struktur aus und erreicht so eine Laufzeit, welche schneller ist als die eines besten unparametrisierten Algorithmus, falls der Parameter klein ist.
Der erste Hauptteil dieser Arbeit führt die Forschung in diese Richtung weiter aus und untersucht den Einfluss von verschieden Parametern auf die Laufzeit von bekannten effizient lösbaren Problemen. Einige vorgestellte Algorithmen sind dabei adaptive Algorithmen, was bedeutet, dass die Laufzeit von diesen Algorithmen mit der Laufzeit des besten unparametrisierten Algorithm für den größtmöglichen Parameterwert übereinstimmt und damit theoretisch niemals schlechter als die besten unparametrisierten Algorithmen und übertreffen diese bereits für leicht nichttriviale Parameterwerte.
Motiviert durch den allgemeinen Erfolg und der Vielzahl solcher parametrisierten Algorithmen, welche eine vielzahl verschiedener Strukturen ausnutzen, untersuchen wir im zweiten Hauptteil dieser Arbeit, wie man solche unterschiedliche homogene Strukturen zu mehr heterogenen Strukturen vereinen kann. Ausgehend von algebraischen Ausdrücken, welche benutzt werden können, um von Parametern beschriebene Strukturen zu definieren, charakterisieren wir klar und robust heterogene Strukturen und zeigen exemplarisch, wie sich die Parameter tree-depth und modular-width heterogen verbinden lassen. Wir beschreiben dazu effiziente Algorithmen auf heterogenen Strukturen mit Laufzeiten, welche im Spezialfall mit den homogenen Algorithmen übereinstimmen. / In classical complexity theory, the worst-case running times of algorithms depend solely on the size of the input. In parameterized complexity the goal is to refine the analysis of the running time of an algorithm by additionally considering a parameter that measures some kind of structure in the input. A parameterized algorithm then utilizes the structure described by the parameter and achieves a running time that is faster than the best general (unparameterized) algorithm for instances of low parameter value.
In the first part of this thesis, we carry forward in this direction and investigate the influence of several parameters on the running times of well-known tractable problems.
Several presented algorithms are adaptive algorithms, meaning that they match the running time of a best unparameterized algorithm for worst-case parameter values. Thus, an adaptive parameterized algorithm is asymptotically never worse than the best unparameterized algorithm, while it outperforms the best general algorithm already for slightly non-trivial parameter values.
As illustrated in the first part of this thesis, for many problems there exist efficient parameterized algorithms regarding multiple parameters, each describing a different kind of structure.
In the second part of this thesis, we explore how to combine such homogeneous structures to more general and heterogeneous structures.
Using algebraic expressions, we define new combined graph classes
of heterogeneous structure in a clean and robust way, and we showcase this for the heterogeneous merge of the parameters tree-depth and modular-width, by presenting parameterized algorithms
on such heterogeneous graph classes and getting running times that match the homogeneous cases throughout.
|
6 |
Graph structurings : some algorithmic applications / Structurations des graphes : quelques applications algorithmiquesKanté, Mamadou Moustapha 03 December 2008 (has links)
Tous les problèmes définissables en logique du second ordre monadique peuvent être résolus en temps polynomial dans les classes de graphes qui ont une largeur de clique bornée. La largeur de clique est un paramètre de graphe défini de manière algébrique, c'est-à-dire, à partir d'opérations de composition de graphes. La largeur de rang, définie de manière combinatoire, est une notion équivalente à la largeur de clique des graphes non orientés. Nous donnons une caractérisation algébrique de la largeur de rang et nous montrons qu'elle est linéairement bornée par la largeur arborescente. Nous proposons également une notion de largeur de rang pour les graphes orientés et une relation de vertex-minor pour les graphes orientés. Nous montrons que les graphes orientés qui ont une largeur de rang bornée sont caractérisés par une liste finie de graphes orientés à exclure comme vertex-minor. Beaucoup de classes de graphes n'ont pas une largeur de rang bornée, par exemple, les graphes planaires. Nous nous intéressons aux systèmes d'étiquetage dans ces classes de graphes. Un système d'étiquetage pour une propriété P dans un graphe G, consiste à assigner une étiquette, aussi petite que possible, à chaque sommet de telle sorte que l'on puisse vérifier si G satisfait P en n'utilisant que les étiquettes des sommets. Nous montrons que si P est une propriété définissable en logique du premier ordre alors, certaines classes de graphes de largeur de clique localement bornée admettent un système d'étiquetage pour P avec des étiquettes de taille logarithmique. Parmi ces classes on peut citer les classes de graphes de degré borné, les graphes planaires et plus généralement les classes de graphes qui excluent un apex comme mineur et, les graphes d'intervalle unitaire. Si x et y sont deux sommets, X un ensemble de sommets et F un ensemble d'arêtes, nous notons Conn(x,y,X,F) la propriété qui vérifie dans un graphe donné si x et y sont connectés par un chemin, qui ne passe par aucun sommet de X si aucune arête de F. Cette propriété n'est pas définissable en logique du premier ordre. Nous montrons qu'elle admet un système d'étiquetage avec des étiquettes de taille logarithmique dans les graphes planaires. Nous montrons enfin que Conn(x,y,X,0) admet également un système d'étiquetage avec des étiquettes de taille logarithmique dans des classes de graphes qui sont définies comme des combinaisons de graphes qui ont une petite largeur de clique et telles que le graphe d'intersection de ces derniers est planaire et est de degré borné. / Every property definable in onadic second order logic can be checked in polynomial-time on graph classes of bounded clique-width. Clique-width is a graph parameter defined in an algebraical way, i.e., with operations ``concatenating graphs'' and that generalize concatenation of words.Rank-width, defined in a combinatorial way, is equivalent to the clique-width of undirected graphs. We give an algebraic characterization of rank-width and we show that rank-width is linearly bounded in term of tree-width. We also propose a notion of ``rank-width'' of directed graphs and a vertex-minor inclusion for directed graphs. We show that directed graphs of bounded ``rank-width'' are characterized by a finite list of finite directed graphs to exclude as vertex-minor. Many graph classes do not have bounded rank-width, e.g., planar graphs. We are interested in labeling schemes on these graph classes. A labeling scheme for a property P in a graph G consists in assigning a label, as short as possible, to each vertex of G and such that we can verify if G satisfies P by just looking at the labels. We show that every property definable in first order logic admit labeling schemes with labels of logarithmic size on certain graph classes that have bounded local clique-width. Bounded degree graph classes, minor closed classes of graphs that exclude an apex graph as a minor have bounded local clique-width. If x and y are two vertices and X is a subset of the set of vertices and Y is a subset of the set of edges, we let Conn(x,y,X,Y) be the graph property x and y are connected by a path that avoids the vertices in X and the edges in Y. This property is not definable by a first order formula. We show that it admits a labeling scheme with labels of logarithmic size on planar graphs. We also show that Conn(x,y,X,0) admits short labeling schemes with labels of logarithmic size on graph classes that are ``planar gluings'' of graphs of small clique-width and with limited overlaps.
|
7 |
Matrix decompositions and algorithmic applications to (hyper)graphs / Décomposition de matrices et applications algorithmiques aux (hyper)graphesBergougnoux, Benjamin 13 February 2019 (has links)
Durant ces dernières décennies, d'importants efforts et beaucoup de café ont été dépensés en vue de caractériser les instances faciles des problèmes NP-difficiles. Dans ce domaine de recherche, une approche s'avère être redoutablement efficace : la théorie de la complexité paramétrée introduite par Downey et Fellows dans les années 90.Dans cette théorie, la complexité d'un problème n'est plus mesurée uniquement en fonction de la taille de l'instance, mais aussi en fonction d'un paramètre .Dans cette boite à outils, la largeur arborescente est sans nul doute un des paramètres de graphe les plus étudiés.Ce paramètre mesure à quel point un graphe est proche de la structure topologique d'un arbre.La largeur arborescente a de nombreuses propriétés algorithmiques et structurelles.Néanmoins, malgré l'immense intérêt suscité par la largeur arborescente, seules les classes de graphes peu denses peuvent avoir une largeur arborescente bornée.Mais, de nombreux problèmes NP-difficiles s'avèrent faciles dans des classes de graphes denses.La plupart du temps, cela peut s'expliquer par l'aptitude de ces graphes à se décomposer récursivement en bipartitions de sommets $(A,B)$ où le voisinage entre $A$ et $B$ possède une structure simple.De nombreux paramètres -- appelés largeurs -- ont été introduits pour caractériser cette aptitude, les plus remarquables sont certainement la largeur de clique , la largeur de rang , la largeur booléenne et la largeur de couplage induit .Dans cette thèse, nous étudions les propriétés algorithmiques de ces largeurs.Nous proposons une méthode qui généralise et simplifie les outils développés pour la largeur arborescente et les problèmes admettant une contrainte d'acyclicité ou de connexité tel que Couverture Connexe , Dominant Connexe , Coupe Cycle , etc.Pour tous ces problèmes, nous obtenons des algorithmes s'exécutant en temps $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ et $n^{O(k)}$ avec $k$ étant, respectivement, la largeur de clique, la largeur de Q-rang, la larguer de rang et la largueur de couplage induit.On prouve aussi qu'il existe un algorithme pour Cycle Hamiltonien s'exécutant en temps $n^{O(k)}$ quand une décomposition de largeur de clique $k$ est donné en entrée.Finalement, nous prouvons qu'on peut compter en temps polynomial le nombre de transversaux minimaux d'hypergraphes $\beta$-acyclique ainsi que le nombre de dominants minimaux de graphes fortement triangulés.Tous ces résultats offrent des pistes prometteuses en vue d'une généralisation des largeurs et de leurs applications algorithmiques. / In the last decades, considerable efforts have been spent to characterize what makes NP-hard problems tractable. A successful approach in this line of research is the theory of parameterized complexity introduced by Downey and Fellows in the nineties.In this framework, the complexity of a problem is not measured only in terms of the input size, but also in terms of a parameter on the input.One of the most well-studied parameters is tree-width, a graph parameter which measures how close a graph is to the topological structure of a tree.It appears that tree-width has numerous structural properties and algorithmic applications.However, only sparse graph classes can have bounded tree-width.But, many NP-hard problems are tractable on dense graph classes.Most of the time, this tractability can be explained by the ability of these graphs to be recursively decomposable along vertex bipartitions $(A,B)$ where the adjacency between $A$ and $B$ is simple to describe.A lot of graph parameters -- called width measures -- have been defined to characterize this ability, the most remarkable ones are certainly clique-width, rank-width, and mim-width.In this thesis, we study the algorithmic properties of these width measures.We provide a framework that generalizes and simplifies the tools developed for tree-width and for problems with a constraint of acyclicity or connectivity such as Connected Vertex Cover, Connected Dominating Set, Feedback Vertex Set, etc.For all these problems, we obtain $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ and $n^{O(k)}$ time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and mim-width.We also prove that there exists an algorithm solving Hamiltonian Cycle in time $n^{O(k)}$, when a clique-width decomposition of width $k$ is given.Finally, we prove that we can count in polynomial time the minimal transversals of $\beta$-acyclic hypergraphs and the minimal dominating sets of strongly chordal graphs.All these results offer promising perspectives towards a generalization of width measures and their algorithmic applications.
|
Page generated in 0.0354 seconds