• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude, représentation et applications des traverses minimales d'un hypergraphe / Representation and applications of hypergraph minimal transversals

Jelassi, Mohamed Nidhal 08 December 2014 (has links)
Cette thèse s'inscrit dans le domaine de la théorie des hypergraphes et s'intéresse aux traverses minimales des hypergraphes. L'intérêt pour l'extraction des traverses minimales est en nette croissance, depuis plusieurs années, et ceci est principalement dû aux solutions qu'offrent les traverses minimales dans divers domaines d'application comme les bases de données, l'intelligence artificielle, l'e-commerce, le web sémantique, etc. Compte tenu donc du large éventail des domaines d'application des traverses minimales et de l'intérêt qu'elles suscitent, l'objectif de cette thèse est donc d'explorer de nouvelles pistes d'application des traverses minimales tout en proposant des méthodes pour optimiser leur extraction. Ceci a donné lieu à trois contributions proposées dans cette thèse. La première approche tend à tirer profit de l'émergence du Web 2.0 et, par conséquent, des réseaux sociaux en utilisant les traverses minimales pour la détection des acteurs importants au sein de ces réseaux. La deuxième partie de recherche au cours de cette thèse s'est intéressé à la réduction du nombre de traverses minimales d'un hypergraphe. Ce nombre étant très élevé, une représentation concise et exacte des traverses minimales a été proposée et est basée sur la construction d'un hypergraphe irrédondant, d'où sont calculées les traverses minimales irrédondantes de l'hypergraphe initial. Une application de cette représentation au problème de l'inférence des dépendances fonctionnelles a été présentée pour illustrer l’intérêt de cette approche. La dernière approche s'est intéressée à la décomposition des hypergraphes en des hypergraphes partiels. Les traverses minimales de ces derniers sont calculées et leur produit cartésien permet de générer l'ensemble des traverses de l'hypergraphe. Les différentes études expérimentales menées ont montré l’intérêt de ces approches proposées / This work is part of the field of the hypergraph theory and focuses on hypergraph minimal transversal. The problem of extracting the minimal transversals from a hypergraph received the interest of many researchers as shown the number of algorithms proposed in the literature, and this is mainly due to the solutions offered by the minimal transversal in various application areas such as databases, artificial intelligence, e-commerce, semantic web, etc. In view of the wide range of fields of minimal transversal application and the interest they generate, the objective of this thesis is to explore new application paths of minimal transversal by proposing methods to optimize the extraction. This has led to three proposed contributions in this thesis. The first approach takes advantage of the emergence of Web 2.0 and, therefore, social networks using minimal transversal for the detection of important actors within these networks. The second part of research in this thesis has focused on reducing the number of hypergraph minimal transversal. A concise and accurate representation of minimal transversal was proposed and is based on the construction of an irredundant hypergraph, hence are calculated the irredundant minimal transversal of the initial hypergraph. An application of this representation to the dependency inference problem is presented to illustrate the usefulness of this approach. The last approach includes the hypergraph decomposition into partial hypergraph the “local” minimal transversal are calculated and their Cartesian product can generate all the hypergraph transversal sets. Different experimental studies have shown the value of these proposed approaches
2

Matrix decompositions and algorithmic applications to (hyper)graphs / Décomposition de matrices et applications algorithmiques aux (hyper)graphes

Bergougnoux, Benjamin 13 February 2019 (has links)
Durant ces dernières décennies, d'importants efforts et beaucoup de café ont été dépensés en vue de caractériser les instances faciles des problèmes NP-difficiles. Dans ce domaine de recherche, une approche s'avère être redoutablement efficace : la théorie de la complexité paramétrée introduite par Downey et Fellows dans les années 90.Dans cette théorie, la complexité d'un problème n'est plus mesurée uniquement en fonction de la taille de l'instance, mais aussi en fonction d'un paramètre .Dans cette boite à outils, la largeur arborescente est sans nul doute un des paramètres de graphe les plus étudiés.Ce paramètre mesure à quel point un graphe est proche de la structure topologique d'un arbre.La largeur arborescente a de nombreuses propriétés algorithmiques et structurelles.Néanmoins, malgré l'immense intérêt suscité par la largeur arborescente, seules les classes de graphes peu denses peuvent avoir une largeur arborescente bornée.Mais, de nombreux problèmes NP-difficiles s'avèrent faciles dans des classes de graphes denses.La plupart du temps, cela peut s'expliquer par l'aptitude de ces graphes à se décomposer récursivement en bipartitions de sommets $(A,B)$ où le voisinage entre $A$ et $B$ possède une structure simple.De nombreux paramètres -- appelés largeurs -- ont été introduits pour caractériser cette aptitude, les plus remarquables sont certainement la largeur de clique , la largeur de rang , la largeur booléenne et la largeur de couplage induit .Dans cette thèse, nous étudions les propriétés algorithmiques de ces largeurs.Nous proposons une méthode qui généralise et simplifie les outils développés pour la largeur arborescente et les problèmes admettant une contrainte d'acyclicité ou de connexité tel que Couverture Connexe , Dominant Connexe , Coupe Cycle , etc.Pour tous ces problèmes, nous obtenons des algorithmes s'exécutant en temps $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ et $n^{O(k)}$ avec $k$ étant, respectivement, la largeur de clique, la largeur de Q-rang, la larguer de rang et la largueur de couplage induit.On prouve aussi qu'il existe un algorithme pour Cycle Hamiltonien s'exécutant en temps $n^{O(k)}$ quand une décomposition de largeur de clique $k$ est donné en entrée.Finalement, nous prouvons qu'on peut compter en temps polynomial le nombre de transversaux minimaux d'hypergraphes $\beta$-acyclique ainsi que le nombre de dominants minimaux de graphes fortement triangulés.Tous ces résultats offrent des pistes prometteuses en vue d'une généralisation des largeurs et de leurs applications algorithmiques. / In the last decades, considerable efforts have been spent to characterize what makes NP-hard problems tractable. A successful approach in this line of research is the theory of parameterized complexity introduced by Downey and Fellows in the nineties.In this framework, the complexity of a problem is not measured only in terms of the input size, but also in terms of a parameter on the input.One of the most well-studied parameters is tree-width, a graph parameter which measures how close a graph is to the topological structure of a tree.It appears that tree-width has numerous structural properties and algorithmic applications.However, only sparse graph classes can have bounded tree-width.But, many NP-hard problems are tractable on dense graph classes.Most of the time, this tractability can be explained by the ability of these graphs to be recursively decomposable along vertex bipartitions $(A,B)$ where the adjacency between $A$ and $B$ is simple to describe.A lot of graph parameters -- called width measures -- have been defined to characterize this ability, the most remarkable ones are certainly clique-width, rank-width, and mim-width.In this thesis, we study the algorithmic properties of these width measures.We provide a framework that generalizes and simplifies the tools developed for tree-width and for problems with a constraint of acyclicity or connectivity such as Connected Vertex Cover, Connected Dominating Set, Feedback Vertex Set, etc.For all these problems, we obtain $2^{O(k)}\cdot n^{O(1)}$, $2^{O(k \log(k))}\cdot n^{O(1)}$, $2^{O(k^2)}\cdot n^{O(1)}$ and $n^{O(k)}$ time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and mim-width.We also prove that there exists an algorithm solving Hamiltonian Cycle in time $n^{O(k)}$, when a clique-width decomposition of width $k$ is given.Finally, we prove that we can count in polynomial time the minimal transversals of $\beta$-acyclic hypergraphs and the minimal dominating sets of strongly chordal graphs.All these results offer promising perspectives towards a generalization of width measures and their algorithmic applications.

Page generated in 0.0831 seconds