• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 8
  • 1
  • Tagged with
  • 54
  • 54
  • 14
  • 12
  • 11
  • 10
  • 9
  • 9
  • 7
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The molecular cloning, sequence, and characterization of the putative protease IV (cjsT) in Rickettsia rickettsii

Temenak, Joseph John, January 1998 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 1998. / Typescript. Vita. Includes bibliographical references (leaves: 126-138). Also available on the Internet.
42

Identification and characterization of three new cyclic nucleotide phosphodiesterase gene families /

Soderling, Scott Haydn. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 120-138).
43

Molecular cloning and characterization of human BAG-1 /

Yang, Xiaolong, January 1999 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, Faculty of Medicine, / Typescript. Bibliography: leaves [199]-[223].
44

Cloning and expression of the Drosophila melanogaster CuZn superoxide dismutase gene

Seto, Nina O. L. January 1990 (has links)
Aging and disease processes may be due to deleterious and irreversible changes produced by free radical reactions. The enzyme copper-zinc superoxide dismutase (CuZn SOD; superoxide: superoxide oxidoreductase, EC 1.15.1.1) performs a protective function by scavenging superoxide radicals. In order to determine whether additional SOD activity affects longevity and oxygen metabolism in Drosophila, our approach was to clone the Sod gene and introduce additional copies of the gene back into the genome via P element mediated transformation. The effects of increased SOD activity on Drosophila life span and oxygen free radical metabolism were investigated. The CuZn SOD cDNA and gene were cloned from Drosophila melanogaster. The sequence of the Sod cDNA and gene revealed an additional C-terminal triplet coding for valine not found in the mature SOD protein. The nucleotide sequence of the coding region has 56% and 57% identity when compared to the corresponding human and rat Sod genes, respectively. A probe of the cloned gene hybridizes to position 68A4-9 on Drosophila polytene chromosomes. In wild-type Drosophila the Sod cDNA hybridizes to a 0.7-0.8 kb transcript which is greatly diminished in a SOD 'null' mutant that produces only 3.5% of the SOD protein. A 1.8 kb EcoRI gene fragment containing the Sod gene was cloned into the P vector pUChsneo and microinjected into Drosophila embryos. Five transformed lines, each of which contain an additional copy of the Sod gene at different chromosomal sites were constructed. The chromosomal positions of the transposed Sod sequence were determined by in situ hybridization of the Sod gene to salivary gland polytene chromosomes. Analysis of RNA from the transformed flies revealed that the transposed Sod gene was expressed. The range of SOD activity for the five transformed lines was 131% to 170% of the value of wild-type. There was good correlation between the amount of Sod mRNA and the level of SOD activity in the transformed lines. Increased SOD levels in the transformed lines did not confer greater resistance to paraquat-generated superoxide radicals, nor increase their lifespan. The SOD 'null' mutant with 3.5% of the wild-type SOD activity was hypersensitive to paraquat when compared to wild-type, whereas the heterozygous SOD deficiency Df(3L)1xd⁹/TM3SbSer with 50% of the wild-type SOD activity was not. Mutants lacking SOD are dramatically impaired in oxygen metabolism and a few percent of wild-type activity appears to provide significant protection against superoxide, while 50% of the wild-type levels confers essentially the same resistance as wild-type. Despite the observation that the SOD activities found in a wide range of animals correlates directly with their longevity, Drosophila melanogaster appears to be well protected against the toxic effects of oxygen by its native levels of SOD. / Arts, Faculty of / Philosophy, Department of / Graduate
45

The copper-zinc superoxide dismutase gene from Drosophila melanogaster : attempts to clone the gene using two mixed sequence oligonucleotide probes

Seto, Nina Oi Ling January 1987 (has links)
Superoxide dismutase is an enzyme which scavenges superoxide radicals and is thought to be a longevity determinant, as there exists a positive correlation between superoxide dismutase concentration and maximum life span potential. The cytosolic CuZn superoxide dismutase in D. melanogaster has been purified and sequenced, but the gene has not been cloned. However, when it is available the CuZn SOD gene may be reintroduced into the Drosophila genome via the P-element transformation system so its effects on the life span potential of Drosophila may be studied. This study describes attempts to clone the CuZn SOD gene from D. melanogaster using two mixed sequence oligonucleotide probes. The SI probe corresponds to amino acids 43-48 of the protein sequence and contains 128 different oligonucleotide sequences representing all possible codon combinations predicted from the amino acid sequence. The GT3 probe is targeted to amino acids 90-95 of the protein. In this probe, deoxyguanosine was placed in positions where all four nucleotides may occur to decrease probe heterogeneity. The probes were used to screen D. melanogaster Canton-S and Oregon-R genomic lambda libraries. Three positive clones isolated from the Canton-S library had identical nucleotide sequence in the GT3 probe binding region, and sequencing of the probe binding site revealed that one member of the GT3 probe had formed a 15 bp duplex with the phage DNA. Screening of the Oregon-R library produced four clones which hybridized with both GT3 and S1 probes. When these phage DNA were hybridized to polytene chromosomes by in situ hybridization, none mapped to 68AB on the third chromosome, the location of the CuZn SOD gene. These results suggest that modification of the classical strategy used in this study is necessary, and implications on probe design are discussed. / Medicine, Faculty of / Biochemistry and Molecular Biology, Department of / Graduate
46

Molecular Biology of Herpesvirus Ateles: A Thesis

DeGrand, David Bruce 03 June 1990 (has links)
Herpesvirus ateles is an oncogenic tumor virus of New World primates, which has sequence homology and biological properties in common with Herpesvirus saimiri. Each causes acute T-cell lymphomas in susceptible species of New World primates, while establishing a latent infection of the T lymphocytes of its normal host. The thesis research consists of characterization of the viral genome, cloning of viral DNA, in vitro immortalization of T cells with the virus, and mapping of viral transcripts within immortalized cells. Additional experiments performed to transfect cloned DNA into immortalized cells were unsuccessful. Fragments of H. ateles virion DNA were cloned into the vector pHyg, which is selectable in both prokaryotic and mammalian cells. Overlapping clones of >95% of the viral genome were characterized by restriction mapping, and were used to determine restriction maps of H. ateles strains 73 and 810. Peripheral blood T lymphocytes from several species of New World primate were expanded in medium containing IL-2. T-cells from cottontopped tamarins were immortalized with H. ateles 73, H. saimiri 11, and H. saimiri 484-77, becoming IL-2-independent and growing continuously in culture. Immortalization was highly efficient, occurring reproducibly in cultures of 104-105 cells. Immortalization of IL-2-expanded T-cells of red-bellied tamarins, spider monkeys, and squirrel monkeys was unsuccessful with all strains of virus used. The right end of H. saimiri DNA is deleted in nononcogenic mutants. It has been found to produce four small RNAs in immortalized cells. Similarly, two small viral RNAs were found to be transcribed in cells immortalized by H. ateles 73. The RNAs, of 115 and 119 nuc1eotides, were mapped in the right end of the viral genome. The RNAs contain two regions of high conservation with H. saimiri RNAs. The genes for the small RNAs contain promoter, internal, and terminator sequences characteristic of cellular U RNAs.
47

Molecular studies of HBV-induced hepatocellular carcinoma by suppression subtractive hybridization and cDNA microarray analyses.

January 2002 (has links)
by Shuk-kei Lau. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 141-148). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Table of Contents --- p.ii / Abstract --- p.vi / 論文摘要 --- p.viii / Abbreviations --- p.ix / List of Figures --- p.x / List of Tables --- p.xii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- General introduction --- p.1 / Chapter 1.2 --- HBV and its role in hepatocarcinogenesis --- p.3 / Chapter 1.2.1 --- Current situation of HBV infection and the HCC incidencein the world --- p.3 / Chapter 1.2.2 --- Current situation of HBV infection and the HCC incidencein Hong Kong --- p.4 / Chapter 1.2.3 --- Genetic organization of HBV --- p.4 / Chapter 1.2.4 --- Principle of hepatocarcinogenesis induced by HBV --- p.5 / Chapter 1.2.4.1 --- Role of chronic hepatitis in hepatocarcinogenesis --- p.5 / Chapter 1.2.4.2 --- Role of HBV in hepatocarcinogenesis --- p.6 / Chapter 1.2.5 --- Current screening tests for HCC --- p.7 / Chapter 1.2.6 --- Current therapies for HCC --- p.9 / Chapter 1.3 --- Aim of the present study --- p.13 / Chapter 1.4 --- "Combining Expressed Sequence Tag (EST), Suppression Subtractive Hybridization and cDNA microarray for rapid differentially by expressed genes screening" --- p.14 / Chapter 1.4.1 --- Expressed Sequence Tag (EST) --- p.14 / Chapter 1.4.2 --- cDNA subtraction --- p.15 / Chapter 1.4.3 --- cDNA microarray --- p.16 / Chapter Chapter 2 --- Materials and Methods / Chapter 2.1 --- PCR-select cDNA subtraction --- p.17 / Chapter 2.1.1 --- Amplification of subtracted cDNA clones by PCR --- p.17 / Chapter 2.1.2 --- Cycle sequencing of subtracted cDNA clones --- p.18 / Chapter 2.1.3 --- Sequence analysis using BLAST server and Stanford Online Universal Resource for Clones and ESTs (SOURCE) --- p.19 / Chapter 2.2 --- cDNA microarray analysis --- p.20 / Chapter 2.2.1 --- Array fabrication --- p.20 / Chapter 2.2.1.1 --- Amplification of cDNA clones by PCR --- p.20 / Chapter 2.2.1.2 --- Purification of PCR products --- p.21 / Chapter 2.2.1.3 --- Cycle sequencing for clones checking --- p.22 / Chapter 2.2.2 --- Microarray printing --- p.22 / Chapter 2.2.2.1 --- Preparation of cDNA target --- p.22 / Chapter 2.2.2.2 --- Arraying --- p.22 / Chapter 2.2.3 --- Screening of differentially expressed genes in hepatocellular carcinoma and its surrounding normal counterpart by cDNA microarray --- p.23 / Chapter 2.2.3.1 --- Extraction of RNA --- p.23 / Chapter 2.2.3.2 --- RNA labeling --- p.24 / Chapter 2.2.3.3 --- Microarray hybridization --- p.26 / Chapter 2.2.3.4 --- Collection of data --- p.27 / Chapter 2.2.3.5 --- Data normalization and analysis --- p.28 / Chapter 2.3 --- Molecular cloning and characterization of a novel cDNA clone differentially expressed in HCC --- p.30 / Chapter 2.3.1 --- Tissue distribution of T2L522 gene --- p.30 / Chapter 2.3.1.1 --- Northern hybridization --- p.30 / Chapter 2.3.1.2 --- Reverse-transcriptase polymerase chain reaction (RT-PCR) --- p.33 / Chapter 2.3.2 --- Expression level of T2L522 in HCC and its surrounding normal counterpart --- p.33 / Chapter 2.3.3 --- Identification of interacting partner of T2L522 using yeast two-hybrid assay --- p.35 / Chapter 2.3.3.1 --- "Cloning of T2L522 gene into the yeast two-hybrid DNA-BD vector, pGBKT7" --- p.35 / Chapter 2.3.3.2 --- Transformation of yeast competent cells --- p.39 / Chapter 2.3.3.3 --- Mating of T2L522-BD with pretransformed human liver cDNA library --- p.40 / Chapter 2.3.3.4 --- Colony lift p-galactosidase filter assay --- p.42 / Chapter 2.3.4 --- Subcellular localization of T2L522 gene by tagging with green fluorescence protein (GFP) --- p.43 / Chapter 2.3.4.1 --- "Cloning of T2L522 gene into the eukaryotic GFP expression vector, pEGFP-Cl" --- p.43 / Chapter 2.3.4.2 --- Transfection of pEGFP-T2L522 into HepG2 cell --- p.43 / Chapter Chapter 3 --- Results / Chapter 3.1 --- PCR-select cDNA subtraction --- p.45 / Chapter 3.1.1 --- The sequencing results of subtracted-HCC cDNA clones --- p.45 / Chapter 3.1.2 --- Categorization of ESTs sequenced from subtracted-HCC library --- p.45 / Chapter 3.2 --- Microarray analysis --- p.49 / Chapter 3.2.1 --- Array fabrication --- p.49 / Chapter 3.2.1.1 --- Amplification of cDNA microarray targets --- p.49 / Chapter 3.2.2 --- Microarray printing --- p.52 / Chapter 3.2.3 --- Microarray analysis of differentially expressed genesin hepatocellular carcinoma and its surrounding normal counterpart --- p.55 / Chapter 3.2.4 --- Data collection --- p.57 / Chapter 3.2.5 --- Image processing: spots finding and quantitation --- p.61 / Chapter 3.2.6 --- Data normalization and analysis --- p.61 / Chapter 3.3 --- Molecular cloning and characterization of a novel cDNA clone differentially expressed in HCC --- p.73 / Chapter 3.3.1 --- Tissue distribution of T2L522 --- p.77 / Chapter 3.3.1.1 --- Northern hybridization --- p.77 / Chapter 3.3.1.2 --- Reverse-transcriptase polymerase chain reaction (RT-PCR) --- p.79 / Chapter 3.3.2 --- Expression level of T2L522 in hepatocellular carcinoma and its surrounding normal counterpart --- p.81 / Chapter 3.3.3 --- Identification of interacting partner of T2L522 using yeast two-hybrid assay --- p.85 / Chapter 3.3.4 --- Subcellular localization of GFP tagged T2L522 --- p.87 / Chapter Chapter 4 --- Discussion / Chapter 4.1 --- EST analysis on subtracted-HCC cDNA library --- p.89 / Chapter 4.2 --- cDNA microarray analysis --- p.92 / Chapter 4.2.1 --- Generation of reliable data using cDNA microarray --- p.92 / Chapter 4.2.1.1 --- Reproducibility of signal and normalized ratio --- p.92 / Chapter 4.2.2 --- Comparison of data between multiple slides --- p.96 / Chapter 4.2.2.1 --- Assession of data quality and statistical significance --- p.96 / Chapter 4.2.2.2 --- Interpretation of gene expression data from single and multiple hybridizarion --- p.97 / Chapter 4.3 --- Candidate genes differentially expressed in HCC and its surrounding normal counterpart --- p.99 / Chapter 4.3.1 --- Protein up-regulated in HCC --- p.99 / Chapter 4.3.1.1 --- Extracellular matrix protein --- p.99 / Chapter 4.3.1.2 --- Protein involved in other metabolism --- p.100 / Chapter 4.3.1.3 --- Protein involved in transcription and translation --- p.100 / Chapter 4.3.2 --- Protein down-regulated in HCC --- p.101 / Chapter 4.3.2.1 --- Membrane associated protein --- p.101 / Chapter 4.3.2.2 --- Protein involved in other metabolism --- p.102 / Chapter 4.3.2.2 --- Secretory protein --- p.104 / Chapter 4.3.3 --- Novel protein differentially expressed in HCC --- p.107 / Chapter 4.4 --- "TBC1 domain containing protein, T2L522" --- p.108 / Chapter 4.4.1 --- Possible involvement of T2L522 gene in HCC --- p.109 / Chapter 4.4.2 --- Tissue distribution and expression pattern of T2L522 --- p.110 / Chapter 4.4.3 --- Potential interacting partner of T2L522 --- p.110 / Chapter 4.4.4 --- Subcellular localization of T2L522 --- p.112 / Chapter 4.5 --- Summary --- p.113 / Appendix --- p.114 / References --- p.141
48

Study of mutations on hepatitis B virus promoters and construction of a replication-competent hepatitis B virus clone.

January 2006 (has links)
Chan Ka Ping Sophie. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 140-144). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.i / Acknowledgements --- p.ii / Abstract --- p.viii / 摘要 --- p.x / Abbreviations --- p.xi / List of Figures --- p.xii / List of Tables --- p.xiv / Chapter 1 --- Introduction / Chapter 1.1 --- Pathogenesis of HBV Infection --- p.1 / Chapter 1.2 --- Classification and Structure --- p.2 / Chapter 1.3 --- HBV Genome --- p.4 / Chapter 1.4 --- Replication Cycle --- p.7 / Chapter 1.5 --- HBV Genotypes and Nomenclature --- p.9 / Chapter 1.5.1 --- Asian prevalent genotypes --- p.9 / Chapter 1.5.2 --- Numbering system --- p.9 / Chapter 1.6 --- Identification of Markers in HBV Genome for HCC Development --- p.11 / Chapter 1.7 --- Project Objective --- p.13 / Chapter 1.8 --- Promoters of HBV --- p.14 / Chapter 1.8.1 --- Pre-S1 promoter --- p.14 / Chapter 1.8.2 --- X promoter and enhancer I --- p.14 / Chapter 1.8.3 --- Core promoter and enhancer II --- p.15 / Chapter 1.8.4 --- Pair of mutations at BCP --- p.17 / Chapter 2 --- Materials and Methods / Chapter 2.1 --- Construction of pGL3-promoter Plasmids --- p.18 / Chapter 2.1.1 --- Templates selection --- p.18 / Chapter 2.1.2 --- Amplification of promoters --- p.19 / Chapter 2.1.3 --- Cloning into pGL3-basic vector --- p.21 / Chapter 2.1.4 --- Screening and plasmid preparation --- p.21 / Chapter 2.2 --- Construction of Mutant Promoter Clones --- p.23 / Chapter 2.2.1 --- Site-directed mutagenesis --- p.23 / Chapter 2.2.2 --- pPreS 1 /2712C mutant clone --- p.24 / Chapter 2.3 --- Cloning of Full-length HBV Genomes --- p.26 / Chapter 2.3.1 --- Replication-competent HBV clone --- p.26 / Chapter 2.3.2 --- Amplification of full-length HBV genome --- p.28 / Chapter 2.3.3 --- Cloning into pUC19 vector --- p.28 / Chapter 2.3.4 --- Screening for insert and sequence confirmation --- p.29 / Chapter 2.3.5 --- Excision of full-length HBV from plasmid --- p.29 / Chapter 2.4 --- Re-construction into a 1.3-fold HBV Clone --- p.32 / Chapter 2.4.1 --- Cloning of HBV fragment nucleotide 979-2617 (nt 979-2617) --- p.32 / Chapter 2.4.2 --- Screening for insert and sequence confirmation --- p.33 / Chapter 2.4.3 --- Cloning of HBV fragment (nt 905-2000) --- p.33 / Chapter 2.4.4 --- Construction of a 1.3-fold HBV genotype Cs clone --- p.34 / Chapter 2.5 --- Cell Culture --- p.37 / Chapter 2.5.1 --- Cell culture maintenance --- p.37 / Chapter 2.5.2 --- Transient transfection of promoter clones --- p.37 / Chapter 2.5.3 --- Transient transfection of HBV genomes --- p.38 / Chapter 2.6 --- Dual-Luciferase® Reporter Assay System --- p.40 / Chapter 2.6.1 --- Principle of the assay --- p.40 / Chapter 2.6.2 --- Cell harvest --- p.43 / Chapter 2.6.3 --- Luciferase assay --- p.43 / Chapter 2.7 --- Data Analysis --- p.44 / Chapter 2.8 --- Extraction of HBV DNA from Intracellular Cores --- p.45 / Chapter 2.8.1 --- Harvest of intracellular cores --- p.45 / Chapter 2.8.2 --- Phenol/chloroform extraction --- p.45 / Chapter 2.9 --- Southern Blotting --- p.47 / Chapter 2.9.1 --- Transfer of DNA to membrane --- p.47 / Chapter 2.9.2 --- Preparation of probes --- p.47 / Chapter 2.9.3 --- Hybridization with radiolabeled probes --- p.48 / Chapter 2.10 --- Detection of HBeAg and HBsAg --- p.50 / Chapter 2.10.1 --- HBsAg assays --- p.50 / Chapter 2.10.2 --- HBeAg assays --- p.51 / Chapter 2.11 --- SEAP Reporter Gene Assay --- p.52 / Chapter 3 --- Results / Chapter 3.1 --- Templates Selected --- p.53 / Chapter 3.2 --- Results of Luciferase Assays --- p.58 / Chapter 3.2.1. --- BCP mutation of genotype A as control --- p.58 / Chapter 3.2.2. --- Effect of C1165T mutation on Xpro/enhI activity of HBV genotype B --- p.60 / Chapter 3.2.3. --- Effect ofT2712C mutation on pre-S1 promoter activity of HBV Genotype B --- p.60 / Chapter 3.2.4. --- Effect of G1613A mutation on core pro/enhII activity of HBV Genotype Cs --- p.64 / Chapter 3.2.5. --- G1613A and BCP mutation --- p.67 / Chapter 3.3 --- Full-length HBV Genome Clones --- p.70 / Chapter 3.3.1. --- Construction of replication-competent full-length HBV genome clones --- p.70 / Chapter 3.3.2. --- Drawbacks of the system --- p.78 / Chapter 3.4 --- Construction of a Replication-competent 1.3-fold HBV Clone --- p.82 / Chapter 3.4.1. --- Construction of the HBV (nt 979-2617) clone --- p.82 / Chapter 3.4.2. --- Construction of the HBV (nt 905-2000) clone --- p.86 / Chapter 3.4.3. --- Construction of 1.3-fold genotype Cs HB V clone --- p.89 / Chapter 3.4.4. --- Test for replication competency --- p.92 / Chapter 4 --- Discussion / Chapter 4.1 --- BCP Mutation as Control of the Luciferase Assay --- p.94 / Chapter 4.2 --- Promoter Activities Not Altered by T2712C and C1165T --- p.96 / Chapter 4.3 --- Mutation G1613A of Core pro/enhll --- p.98 / Chapter 4.3.1 --- Mutation resides in negative regulatory element of core promoter --- p.98 / Chapter 4.3.2 --- NRE and NRE-binding protein --- p.98 / Chapter 4.3.3 --- Relationship with BCP mutation --- p.101 / Chapter 4.4 --- HBV Constructs --- p.103 / Chapter 4.4.1 --- Rationale in re-construction of 1.3-fold HB V clone --- p.103 / Chapter 4.4.2 --- Replication competency --- p.104 / Chapter 4.5 --- Conclusion --- p.106 / Chapter 4.6 --- Future Work --- p.107 / Appendix --- p.108 / References --- p.140
49

Isolation, characterization and chromosomal mapping of human 56 kDa selenium binding protein.

January 1997 (has links)
by Peter, Wei Gong Chang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 103-124). / ACKNOWLEDGEMENTS --- p.i / ABSTRACT --- p.ii / TABLE OF CONTENTS --- p.iv / ABBREVIATIONS --- p.viii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- General introduction --- p.1 / Chapter 1.2 --- Human genome project --- p.5 / Chapter 1.3 --- Human adult heart cDNA library --- p.7 / Chapter 1.4 --- Human fetal heart cDNA library --- p.8 / Chapter 1.5 --- Sequencing of a human heart cDNA clone --- p.9 / Chapter 1.6 --- Knowledge of the role of selenium --- p.13 / Chapter 1.7 --- Mouse 56kDa selenium binding protein and acetaminophen-binding protein --- p.16 / Chapter CHAPTER 2 --- MATERIALS AND METHODS / Chapter 2.1 --- Plating out the cDNA library --- p.20 / Chapter 2.1.1 --- "Mediums, buffers and solutions" --- p.20 / Chapter 2.1.2 --- Bacteriophage clones preparation --- p.21 / Chapter 2.2 --- cDNA clone amplification by PCR --- p.23 / Chapter 2.3 --- Cycle sequencing of PCR products --- p.25 / Chapter 2.3.1 --- "Media, buffers and solutions" --- p.25 / Chapter 2.3.2 --- Preparation of sequencing reaction --- p.25 / Chapter 2.4 --- Gel electrophoresis using an automated A.L.F sequencer --- p.27 / Chapter 2.5 --- DNA sequence analysis --- p.29 / Chapter 2.6 --- Preparation of competent E. coli for transformation --- p.30 / Chapter 2.7 --- Transformation of plasmid into competent E. coll --- p.31 / Chapter 2.8 --- Mini-preparation of plasmid DNA --- p.32 / Chapter 2.9 --- Large scale plasmid DNA preparation by QIAGEN --- p.34 / Chapter 2.10 --- Cloning the human 56 kDa selenium binding protein (hSP56) into the pAED4 vector --- p.36 / Chapter 2.10.1 --- Bacterial strains and vector --- p.36 / Chapter 2.10.2 --- "Media, buffers and solutions" --- p.38 / Chapter 2.10.3 --- Primers design and PCR --- p.42 / Chapter 2.10.4 --- Purification of PCR products by Geneclean --- p.43 / Chapter 2.10.5 --- Restriction digestion of purified PCR product and pAED4 --- p.44 / Chapter 2.10.6 --- Ligation and transformation of hSP56 --- p.45 / Chapter 2.10.7 --- Screening and purification ofpAED4hSP56. --- p.47 / Chapter 2.11 --- Expression of hsp56 --- p.50 / Chapter 2.11.1 --- Induction of hSP56 expression --- p.50 / Chapter 2.11.2 --- SDS-PAGE and protein detection --- p.51 / Chapter 2.12 --- Northern hybriddization of hSP56 --- p.53 / Chapter 2.12.1 --- Animals & human tissue --- p.53 / Chapter 2.12.2 --- "Mediums, buffers and solutions" --- p.53 / Chapter 2.12.3 --- Preparation of total RNA --- p.56 / Chapter 2.12.4 --- Formaldehyde agarose gel electrophoresis --- p.57 / Chapter 2.12.5 --- Preparation of radioactive probe --- p.58 / Chapter 2.12.6 --- RNA transfer and Northern hybridization --- p.59 / Chapter 2.13 --- Chromosomal mapping of the hSP56 gene --- p.62 / Chapter CHAPTER 3 --- RESULTS / Chapter 3.1 --- The sequencing results of 553 cDNA clones --- p.63 / Chapter 3.2 --- Catalogues of genes expressed --- p.65 / Chapter 3.3 --- Sequence analysis of hSP56 --- p.71 / Chapter 3.4 --- Northern hybridization of hSP56 --- p.84 / Chapter 3.5 --- Cloning of hSP56 into pAED4 --- p.87 / Chapter 3.6 --- Expression of the hSP56 in E. coli --- p.89 / Chapter 3.7 --- Chromosomal mapping of the hSP56 gene --- p.92 / Chapter CHAPTER 4 --- DISCUSSION / Chapter 4.1 --- General discussion --- p.94 / Chapter 4.2 --- The possible roles of hSP56 and mSP56 --- p.101 / Chapter 4.3 --- Future prospects --- p.102 / REFERENCES --- p.103 / APPENDIX 1 --- p.125 / APPENDIX.2 --- p.127
50

Cloning and characterization of a cDNA encoding er1, a novel developmentally regulated FGF response gene /

Li, Yu, January 1998 (has links)
Thesis (M.Sc.), Memorial University of Newfoundland, 1998. / Restricted until June 1999. Bibliography: leaves 85-97.

Page generated in 0.0645 seconds