Spelling suggestions: "subject:"cloud 1echnology"" "subject:"cloud 1technology""
1 |
Adoption intention of Clound Computing Technologies by enterprisesWang, Jen-Hua 18 July 2012 (has links)
The cloud technology has become the hot topics of the information technology industry in these recent years, and it is one of the focal point intellectual industry in our government.
However, most of enterprises still have some concerns for cloud technology. The information security of the cloud technology, the profitability and the cost saving for the enterprise and the others are the major concerned factors for the enterprises
The aim of this study is to comprehend the market of cloud technology does really understand what the enterprise¡¦s intention for using cloud technology, does really understand what the key-points are the enterprises¡¦ intentions about adopting the cloud technology. And the risks influence that enterprise is facing when using the cloud technology. The third one is that using the subjective product knowledge measure how much the enterprises understanding of cloud technology.
This study used questionnaire type, and there are the measurable samples of 228 in this study. Using SPSS and partial least squares method (the partial least squares, PLS) analyze the descriptive and path analysis.
The results of the research are, the subjective product knowledge positively affects the risks of the enterprises using cloud technology. Most of the risk factors, such as the financial risk, safety risk, technology risk and human risk, negative affect the intension for enterprises using the cloud technology. And the subjective product knowledge positively affects the enterprises adopting cloud technology. According to the research findings, this study provides useful insight for the further development of the cloud technology.
|
2 |
Technological Architecture with Low Cost Sensors to Improve Physical Therapy MonitoringZambrano, Ericsson Ocas, Munoz, Kemeli Reyes, Armas-Aguirre, Jimmy, Gonzalez, Paola A. 01 June 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / In this article, we propose a wireless monitoring solution for gait parameters using low-cost sensors in the physical rehabilitation of patients with gait disorders. This solution consists of infrared speed sensors (IRSS), force-sensing Resistor (FSR) and microcontrollers placed in a walker. These sensors collect the pressure distribution on the walker's handle and the speed of the steps during therapy session. The proposal allows to improve the traditional physiotherapy session times through a mobile application to perform the monitoring controlled by a health specialist in real time. The proposed solution consists of 4 stages: 1. Obtaining gear parameters, 2. Data transmission, 3. Information Storage and 4. Data collection and processing. Solution was tested with 10 patients from a physical rehabilitation center in Lima, Peru. Preliminary results revealed a significant reduction in the rehabilitation session from 25 to 5.2 minutes. / Revisión por pares
|
3 |
Implementation of Distributed Cloud System Architecture using AdvancedContainer Orchestration, Cloud Storage, and Centralized Database for a Web-based PlatformKarkera, Sohan Sadanand January 2020 (has links)
No description available.
|
4 |
Technological solution for the identification and reduction of stress level using wearablesRaymondi, Luis Guillermo Antezana, Guzman, Fabricio Eduardo Aguirre, Armas-Aguirre, Jimmy, Agonzalez, Paola 01 June 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / In this article, a technological solution is proposed to identify and reduce the level of mental stress of a person through a wearable device. The proposal identifies a physiological variable: Heart rate, through the integration between a wearable and a mobile application through text recognition using the back camera of a smartphone. As part of the process, the technological solution shows a list of guidelines depending on the level of stress obtained in a given time. Once completed, it can be measured again in order to confirm the evolution of your stress level. This proposal allows the patient to keep his stress level under control in an effective and accessible way in real time. The proposal consists of four phases: 1. Collection of parameters through the wearable; 2. Data reception by the mobile application; 3. Data storage in a cloud environment and 4. Data collection and processing; this last phase is divided into 4 sub-phases: 4.1. Stress level analysis, 4.2. Recommendations to decrease the level obtained, 4.3. Comparison between measurements and 4.4. Measurement history per day. The proposal was validated in a workplace with people from 20 to 35 years old located in Lima, Peru. Preliminary results showed that 80% of patients managed to reduce their stress level with the proposed solution. / Revisión por pares
|
5 |
A framework to manage uncertainties in cloud manufacturing environmentYadekar, Yaser January 2016 (has links)
This research project aims to develop a framework to manage uncertainty in cloud manufacturing for small and medium enterprises (SMEs). The framework includes a cloud manufacturing taxonomy; guidance to deal with uncertainty in cloud manufacturing, by providing a process to identify uncertainties; a detailed step-by-step approach to managing the uncertainties; a list of uncertainties; and response strategies to security and privacy uncertainties in cloud manufacturing. Additionally, an online assessment tool has been developed to implement the uncertainty management framework into a real life context. To fulfil the aim and objectives of the research, a comprehensive literature review was performed in order to understand the research aspects. Next, an uncertainty management technique was applied to identify, assess, and control uncertainties in cloud manufacturing. Two well-known approaches were used in the evaluation of the uncertainties in this research: Simple Multi-Attribute Rating Technique (SMART) to prioritise uncertainties; and a fuzzy rule-based system to quantify security and privacy uncertainties. Finally, the framework was embedded into an online assessment tool and validated through expert opinion and case studies. Results from this research are useful for both academia and industry in understanding aspects of cloud manufacturing. The main contribution is a framework that offers new insights for decisions makers on how to deal with uncertainty at adoption and implementation stages of cloud manufacturing. The research also introduced a novel cloud manufacturing taxonomy, a list of uncertainty factors, an assessment process to prioritise uncertainties and quantify security and privacy related uncertainties, and a knowledge base for providing recommendations and solutions.
|
6 |
Business Intelligence řešení pro společnost 1188 / Business Intelligence Solution for Company 1188Kříž, Jan January 2015 (has links)
Cílem této diplomové práce je vytvoření Business Intelligence řešení pro společnost 1188. Na základě výsledného Business Intelligence řešení bude umožněno managementu společnosti vykonávat přesnější rozhodnutí, která se budou shodovat se strategií společnosti.
|
7 |
Confidential Federated Learning with Homomorphic Encryption / Konfidentiellt federat lärande med homomorf krypteringWang, Zekun January 2023 (has links)
Federated Learning (FL), one variant of Machine Learning (ML) technology, has emerged as a prevalent method for multiple parties to collaboratively train ML models in a distributed manner with the help of a central server normally supplied by a Cloud Service Provider (CSP). Nevertheless, many existing vulnerabilities pose a threat to the advantages of FL and cause potential risks to data security and privacy, such as data leakage, misuse of the central server, or the threat of eavesdroppers illicitly seeking sensitive information. Promisingly advanced cryptography technologies such as Homomorphic Encryption (HE) and Confidential Computing (CC) can be utilized to enhance the security and privacy of FL. However, the development of a framework that seamlessly combines these technologies together to provide confidential FL while retaining efficiency remains an ongoing challenge. In this degree project, we develop a lightweight and user-friendly FL framework called Heflp, which integrates HE and CC to ensure data confidentiality and integrity throughout the entire FL lifecycle. Heflp supports four HE schemes to fit diverse user requirements, comprising three pre-existing schemes and one optimized scheme that we design, named Flashev2, which achieves the highest time and spatial efficiency across most scenarios. The time and memory overheads of all four HE schemes are also evaluated and a comparison between the pros and cons of each other is summarized. To validate the effectiveness, Heflp is tested on the MNIST dataset and the Threat Intelligence dataset provided by CanaryBit, and the results demonstrate that it successfully preserves data privacy without compromising model accuracy. / Federated Learning (FL), en variant av Maskininlärning (ML)-teknologi, har framträtt som en dominerande metod för flera parter att samarbeta om att distribuerat träna ML-modeller med hjälp av en central server som vanligtvis tillhandahålls av en molntjänstleverantör (CSP). Trots detta utgör många befintliga sårbarheter ett hot mot FL:s fördelar och medför potentiella risker för datasäkerhet och integritet, såsom läckage av data, missbruk av den centrala servern eller risken för avlyssnare som olagligt söker känslig information. Lovande avancerade kryptoteknologier som Homomorf Kryptering (HE) och Konfidentiell Beräkning (CC) kan användas för att förbättra säkerheten och integriteten för FL. Utvecklingen av en ramverk som sömlöst kombinerar dessa teknologier för att erbjuda konfidentiellt FL med bibehållen effektivitet är dock fortfarande en pågående utmaning. I detta examensarbete utvecklar vi en lättviktig och användarvänlig FL-ramverk som kallas Heflp, som integrerar HE och CC för att säkerställa datakonfidentialitet och integritet under hela FLlivscykeln. Heflp stöder fyra HE-scheman för att passa olika användarbehov, bestående av tre befintliga scheman och ett optimerat schema som vi designar, kallat Flashev2, som uppnår högsta tids- och rumeffektivitet i de flesta scenarier. Tids- och minneskostnaderna för alla fyra HE-scheman utvärderas också, och en jämförelse mellan fördelar och nackdelar sammanfattas. För att validera effektiviteten testas Heflp på MNIST-datasetet och Threat Intelligence-datasetet som tillhandahålls av CanaryBit, och resultaten visar att det framgångsrikt bevarar datasekretessen utan att äventyra modellens noggrannhet.
|
Page generated in 0.0561 seconds