1 |
SAMs (self-assembled monolayers) passivation of cobalt microbumps for 3D stacking of Si chipsHou, Lin, Derakhshandeh, Jaber, Armini, Silvia, Gerets, Carine, De Preter, Inge, June Rebibis, Kenneth, Miller, Andy, De wolf, Ingrid, Beyne, Eric 22 July 2016 (has links) (PDF)
In this paper SAM (self-assembled monolayers) is used to passivate cobalt microbumps for 3D-stacking of Si chips. The SAM deposition process is optimized, using input from characterization techniques such as water contact angle measurement, ATR, AFM and XPS analysis in order to form a monolayer of Thiols-SAM on cobalt microbumps. A 3D stacked Si chips test vehicle was used to demonstrate the effectiveness of the SAM coating on cobalt bumps by measuring the electrical continuity of daisy chains.
|
2 |
SAMs (self-assembled monolayers) passivation of cobalt microbumps for 3D stacking of Si chipsHou, Lin, Derakhshandeh, Jaber, Armini, Silvia, Gerets, Carine, De Preter, Inge, June Rebibis, Kenneth, Miller, Andy, De wolf, Ingrid, Beyne, Eric 22 July 2016 (has links)
In this paper SAM (self-assembled monolayers) is used to passivate cobalt microbumps for 3D-stacking of Si chips. The SAM deposition process is optimized, using input from characterization techniques such as water contact angle measurement, ATR, AFM and XPS analysis in order to form a monolayer of Thiols-SAM on cobalt microbumps. A 3D stacked Si chips test vehicle was used to demonstrate the effectiveness of the SAM coating on cobalt bumps by measuring the electrical continuity of daisy chains.
|
Page generated in 0.0274 seconds