• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SAMs (self-assembled monolayers) passivation of cobalt microbumps for 3D stacking of Si chips

Hou, Lin, Derakhshandeh, Jaber, Armini, Silvia, Gerets, Carine, De Preter, Inge, June Rebibis, Kenneth, Miller, Andy, De wolf, Ingrid, Beyne, Eric 22 July 2016 (has links) (PDF)
In this paper SAM (self-assembled monolayers) is used to passivate cobalt microbumps for 3D-stacking of Si chips. The SAM deposition process is optimized, using input from characterization techniques such as water contact angle measurement, ATR, AFM and XPS analysis in order to form a monolayer of Thiols-SAM on cobalt microbumps. A 3D stacked Si chips test vehicle was used to demonstrate the effectiveness of the SAM coating on cobalt bumps by measuring the electrical continuity of daisy chains.
2

Behavior of Copper Contamination for Ultra-Thinning of 300 mm Silicon Wafer down to <5 μm

Mizushima, Yoriko, Kim, Youngsuk, Nakamura, Tomoji, Sugie, Ryuichi, Ohba, Takayuki 22 July 2016 (has links) (PDF)
Bumpless interconnects and ultra-thinning of 300 mm wafers for three-dimensional (3D) stacking technology has been studied [1, 2]. In our previous studies, wafer thinning effect using device wafers less than 10 μm was investigated [3, 4]. There was no change for the retention time before and after thinning even at 4 μm in thickness of DRAM wafer [5]. In this study, the behavior of Cu contamination on an ultra-thin Si stacked structure was investigated. Thinned Si wafers were intentionally contaminated with Cu on the backside and 250 °C of heating was carried out during the adhesive bonding and de-bonding processing. An approximately 200 nm thick damaged layer was formed at the backside of the Si wafer after thinning process and Cu particle precipitates ranged at 20 nm were observed by cross-sectional transmission electron microscopy (X-TEM). With secondary ion mass spectrometry (SIMS) and EDX analyses, Cu diffusion was not detected in the Si substrate, suggesting that the damaged layer prevents Cu diffusion from the backside.
3

Automatizace procesu 3D zobrazování / Automatization of 3D stacking process

Kamenec, Jan January 2012 (has links)
The task of my thesis was to automate the process of 3D stacking. The work includes design of complex control board, that will serve as a control unit and provide a comprehensive function of mechanical displacement in combination with digital image acquisition. In addition, the electronics for controlling a stepper motor, PCB and the design. The result of this is a facility that provides automatic acquisition of images with different depth of field.
4

SAMs (self-assembled monolayers) passivation of cobalt microbumps for 3D stacking of Si chips

Hou, Lin, Derakhshandeh, Jaber, Armini, Silvia, Gerets, Carine, De Preter, Inge, June Rebibis, Kenneth, Miller, Andy, De wolf, Ingrid, Beyne, Eric 22 July 2016 (has links)
In this paper SAM (self-assembled monolayers) is used to passivate cobalt microbumps for 3D-stacking of Si chips. The SAM deposition process is optimized, using input from characterization techniques such as water contact angle measurement, ATR, AFM and XPS analysis in order to form a monolayer of Thiols-SAM on cobalt microbumps. A 3D stacked Si chips test vehicle was used to demonstrate the effectiveness of the SAM coating on cobalt bumps by measuring the electrical continuity of daisy chains.
5

Behavior of Copper Contamination for Ultra-Thinning of 300 mm Silicon Wafer down to <5 μm

Mizushima, Yoriko, Kim, Youngsuk, Nakamura, Tomoji, Sugie, Ryuichi, Ohba, Takayuki 22 July 2016 (has links)
Bumpless interconnects and ultra-thinning of 300 mm wafers for three-dimensional (3D) stacking technology has been studied [1, 2]. In our previous studies, wafer thinning effect using device wafers less than 10 μm was investigated [3, 4]. There was no change for the retention time before and after thinning even at 4 μm in thickness of DRAM wafer [5]. In this study, the behavior of Cu contamination on an ultra-thin Si stacked structure was investigated. Thinned Si wafers were intentionally contaminated with Cu on the backside and 250 °C of heating was carried out during the adhesive bonding and de-bonding processing. An approximately 200 nm thick damaged layer was formed at the backside of the Si wafer after thinning process and Cu particle precipitates ranged at 20 nm were observed by cross-sectional transmission electron microscopy (X-TEM). With secondary ion mass spectrometry (SIMS) and EDX analyses, Cu diffusion was not detected in the Si substrate, suggesting that the damaged layer prevents Cu diffusion from the backside.

Page generated in 0.0697 seconds