• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification and characterisation of new genes associated to multiminicore disease / Identification et caractérisation de nouveaux gènes associés à la myopathie à multiminicores

Davignon, Laurianne 20 January 2015 (has links)
Les myopathies congénitales sont des pathologies génétiques rares caractérisées par une hypotonie néonatale, un retard moteur et une faiblesse musculaire. Notre laboratoire s'intéresse à la myopathie à multiminicore (MmD) qui se caractérise par une réduction de l'activité mitochondriale en de multiples points focaux et une désorganisation des sarcomères au sein de la fibre musculaire. Notre groupe est à l'origine de l'identification de la plupart des gènes mutés dans cette pathologie. Néanmoins, 30% des cas restent à ce jour sans diagnostic moléculaire. L'étude d'une famille consanguine a permis d'identifier une mutation homozygote tronquante dans la région codante d'un coactivateur transcriptionnel (appelé TCA) dont la fonction n'a jamais été associée au muscle. L'analyse des cellules de patients a révélé l'absence d'ARN messager ainsi que l'absence de protéine. Par des analyses transcriptomiques sur un modèle d'extinction transitoire de TCA, j'ai pu mettre en évidence une diminution de l'expression des protéines musculaires contractiles (en différenciation) et une augmentation des protéines du cycle cellulaire (en prolifération) suggérant que TCA joue un rôle dans la balance prolifération/différenciation au sein du tissu musculaire. Nous présentons ici une nouvelle forme de myopathie congénitale avec un profil histologique original qui met en évidence l'existence de nombreux points communs entre les différentes formes de myopathies mais également avec les dystrophies musculaires. Nous avons identifié un nouveau gène impliqué dans les maladies génétiques humaines qui se trouve être un acteur de la balance prolifération/différenciation au sein du muscle. / Congenital myopathies are rare genetic disorders characterized by neonatal hypotonia, delayed motor development and muscle weakness. Our laboratory is particularly interested in the study of multi-minicore disease (MmD), which is characterised by multiple foci of mitochondria depletion and short sarcomere disorganisation areas (cores) within muscle fibers. Our group identified most of the genes associated to this genetically and phenotypically heterogeneous condition. However, at least 30% of multiminicore disease cases are not associated with the known genes and remain genetically uncharacterized. The study of a large consanguineous family by homozygosity mapping allowed the identification of a homozygous nonsense mutation in the coding sequence of a transcriptional coactivator (named thereafter TCA), which had never been associated with a muscle condition. qPCR and western blotting showed absence of messenger and protein on patient samples. A microarray performed on a transient TCA silencing model, which disclosed a tendency to downregulation of muscle and contractile proteins (in differentiation conditions), and an upregulation of cell cycle proteins (in proliferative conditions), suggesting a role of TCA in regulating the proliferation/differentiation balance in muscle. Thus, we report a novel congenital muscle condition with a unique histological pattern, stressing the histological overlap of different forms of congenital myopathies and muscular dystrophies. We characterize a new gene in human genetic conditions and a novel regulator of the proliferation/differentiation balance in muscle.
2

Rôle de la ghréline dans la régulation du coactivateur transcriptionnel PGC-1alpha

Keil, Sarah 12 1900 (has links)
L’adaptation de l’organisme à son environnement est essentielle à sa survie. L’homéostasie énergétique permet l’équilibre entre les apports, les dépenses et le stockage d’énergie. Un surplus calorique important dérègle ce processus et mène au développement du syndrome métabolique caractérisé, entre autres, par une obésité, un diabète de type II, des maladies cardiovasculaires et des dyslipidémies. La ghréline participe au maintien de l’équilibre énergétique durant le jeûne en stimulant la production de glucose par le foie et le stockage lipidique dans le tissu adipeux. Le coactivateur transcriptionnel PGC-1alpha, surexprimé en situation de jeûne, est impliqué dans l’induction de la production de glucose par le foie et l’oxydation des acides gras. Notre hypothèse est que ces deux acteurs clés du métabolisme énergétique constituent un axe de régulation commun. Dans cette étude, nous montrons que la ghréline participe à la régulation de PGC-1alpha. Son récepteur GHS-R1a, possédant une forte activité constitutive, est également impliqué de façon indépendante au ligand. GHS-R1a réduit l’activité transcriptionnelle de PGC-1alpha tandis que l’ajout du ligand inverse modérément cette action. L’effet de GHS-R1a corrèle avec l’acétylation de PGC-1alpha qui est fortement augmentée de façon dose-dépendante. La stabilité de PGC-1alpha est également augmentée par le GHS-R1a indépendamment de l’ubiquitine. La ghréline diminue la capacité de PGC-1alpha à lier PPARbeta, un récepteur nucléaire partenaire de PGC-1alpha. De plus, la ghréline réduit, de façon ligand-dépendante, la capacité de coactivation de PGC-1alpha sur PPARbeta dans les hépatocytes. L’ensemble de ces résultats identifie PGC-1alpha comme cible du signal de la ghréline et suggère un axe de régulation ghréline/PGC-1alpha/PPARbeta.Une meilleure compréhension de cet axe de régulation va permettre la mise en évidence de nouvelles cibles thérapeutiques pour faire face aux pathologies associées au syndrome métabolique. / The adaptation of an organism to its environment is essential to its survival. Energy homeostasis is defined as the balance between intakes, expenses and storage of energy. An excess of calories disrupts this process and leads to the development of the metabolic syndrome that is characterized by obesity, type II diabetes, cardiovascular diseases and dyslipidemia. During fasting, ghrelin participates in the maintenance of energy balance by stimulating hepatic production of glucose and lipid storage in adipose tissue. The transcriptional coactivator PGC-1alpha is overexpressed in the liver during fasting and is involves in the induction of the hepatic glucose production and fatty acid oxidation. Our hypothesis is that these two key performers in the energy metabolism constitute a common axis control. In this study, we show that ghrelin plays a role in the regulation of PGC-1alpha. The ghrelin receptor GHS-R1a is also involved because of its strong constitutive activity in absence of ligand. We found that GHS-R1a inhibited PGC-1alpha transcriptional activity whereas adding ghrelin to cells moderated this effect. PGC-1alpha activation by GHS-R1a correlated with a dose-dependent increase of PGC-1alpha acetylation. The stability of PGC-1alpha was also increased by ghrelin receptor in a manner involving the ubiquitin-independent proteasome pathway. Ghrelin decreased the ability of PGC-1alpha to bind to PPARbeta, one of its nuclear receptor partners. Furthermore, ghrelin decreased the ability of PGC-1alpha to coactivate PPARbeta in a ligand-dependent manner in hepatocytes. Together, these results identify PGC-1alpha as a metabolic target of GHSR-1a signaling and defines a new regulatory axis involving ghrelin/PGC-1alpha/PPARbeta in hepatocytes. A better understanding of this regulation axis will provide novel aspects in therapeutic targeting of diseases associated with the metabolic syndrome.
3

Rôle de la ghréline dans la régulation du coactivateur transcriptionnel PGC-1alpha

Keil, Sarah 12 1900 (has links)
L’adaptation de l’organisme à son environnement est essentielle à sa survie. L’homéostasie énergétique permet l’équilibre entre les apports, les dépenses et le stockage d’énergie. Un surplus calorique important dérègle ce processus et mène au développement du syndrome métabolique caractérisé, entre autres, par une obésité, un diabète de type II, des maladies cardiovasculaires et des dyslipidémies. La ghréline participe au maintien de l’équilibre énergétique durant le jeûne en stimulant la production de glucose par le foie et le stockage lipidique dans le tissu adipeux. Le coactivateur transcriptionnel PGC-1alpha, surexprimé en situation de jeûne, est impliqué dans l’induction de la production de glucose par le foie et l’oxydation des acides gras. Notre hypothèse est que ces deux acteurs clés du métabolisme énergétique constituent un axe de régulation commun. Dans cette étude, nous montrons que la ghréline participe à la régulation de PGC-1alpha. Son récepteur GHS-R1a, possédant une forte activité constitutive, est également impliqué de façon indépendante au ligand. GHS-R1a réduit l’activité transcriptionnelle de PGC-1alpha tandis que l’ajout du ligand inverse modérément cette action. L’effet de GHS-R1a corrèle avec l’acétylation de PGC-1alpha qui est fortement augmentée de façon dose-dépendante. La stabilité de PGC-1alpha est également augmentée par le GHS-R1a indépendamment de l’ubiquitine. La ghréline diminue la capacité de PGC-1alpha à lier PPARbeta, un récepteur nucléaire partenaire de PGC-1alpha. De plus, la ghréline réduit, de façon ligand-dépendante, la capacité de coactivation de PGC-1alpha sur PPARbeta dans les hépatocytes. L’ensemble de ces résultats identifie PGC-1alpha comme cible du signal de la ghréline et suggère un axe de régulation ghréline/PGC-1alpha/PPARbeta.Une meilleure compréhension de cet axe de régulation va permettre la mise en évidence de nouvelles cibles thérapeutiques pour faire face aux pathologies associées au syndrome métabolique. / The adaptation of an organism to its environment is essential to its survival. Energy homeostasis is defined as the balance between intakes, expenses and storage of energy. An excess of calories disrupts this process and leads to the development of the metabolic syndrome that is characterized by obesity, type II diabetes, cardiovascular diseases and dyslipidemia. During fasting, ghrelin participates in the maintenance of energy balance by stimulating hepatic production of glucose and lipid storage in adipose tissue. The transcriptional coactivator PGC-1alpha is overexpressed in the liver during fasting and is involves in the induction of the hepatic glucose production and fatty acid oxidation. Our hypothesis is that these two key performers in the energy metabolism constitute a common axis control. In this study, we show that ghrelin plays a role in the regulation of PGC-1alpha. The ghrelin receptor GHS-R1a is also involved because of its strong constitutive activity in absence of ligand. We found that GHS-R1a inhibited PGC-1alpha transcriptional activity whereas adding ghrelin to cells moderated this effect. PGC-1alpha activation by GHS-R1a correlated with a dose-dependent increase of PGC-1alpha acetylation. The stability of PGC-1alpha was also increased by ghrelin receptor in a manner involving the ubiquitin-independent proteasome pathway. Ghrelin decreased the ability of PGC-1alpha to bind to PPARbeta, one of its nuclear receptor partners. Furthermore, ghrelin decreased the ability of PGC-1alpha to coactivate PPARbeta in a ligand-dependent manner in hepatocytes. Together, these results identify PGC-1alpha as a metabolic target of GHSR-1a signaling and defines a new regulatory axis involving ghrelin/PGC-1alpha/PPARbeta in hepatocytes. A better understanding of this regulation axis will provide novel aspects in therapeutic targeting of diseases associated with the metabolic syndrome.

Page generated in 0.0932 seconds