Spelling suggestions: "subject:"coagulation equation"" "subject:"koagulation equation""
1 |
Coagulation-fragmentation dynamicsStewart, Iain W. January 1988 (has links)
No description available.
|
2 |
Méthodes de Monte Carlo stratifiées pour l'intégration numérique et la simulation numériques / Stratified Monte Carlo methods for numerical integration and simulationFakhereddine, Rana 26 September 2013 (has links)
Les méthodes de Monte Carlo (MC) sont des méthodes numériques qui utilisent des nombres aléatoires pour résoudre avec des ordinateurs des problèmes des sciences appliquées et des techniques. On estime une quantité par des évaluations répétées utilisant N valeurs et l'erreur de la méthode est approchée par la variance de l'estimateur. Le présent travail analyse des méthodes de réduction de la variance et examine leur efficacité pour l'intégration numérique et la résolution d'équations différentielles et intégrales. Nous présentons d'abord les méthodes MC stratifiées et les méthodes d'échantillonnage par hypercube latin (LHS : Latin Hypercube Sampling). Parmi les méthodes de stratification, nous privilégions la méthode simple (MCS) : l'hypercube unité Is := [0; 1)s est divisé en N sous-cubes d'égale mesure, et un point aléatoire est choisi dans chacun des sous-cubes. Nous analysons la variance de ces méthodes pour le problème de la quadrature numérique. Nous étudions particulièrment le cas de l'estimation de la mesure d'un sous-ensemble de Is. La variance de la méthode MCS peut être majorée par O(1=N1+1=s). Les résultats d'expériences numériques en dimensions 2,3 et 4 montrent que les majorations obtenues sont précises. Nous proposons ensuite une méthode hybride entre MCS et LHS, qui possède les propriétés de ces deux techniques, avec un point aléatoire dans chaque sous-cube et les projections des points sur chacun des axes de coordonnées également réparties de manière régulière : une projection dans chacun des N sousintervalles qui divisent I := [0; 1) uniformément. Cette technique est appelée Stratification Sudoku (SS). Dans le même cadre d'analyse que précédemment, nous montrons que la variance de la méthode SS est majorée par O(1=N1+1=s) ; des expériences numériques en dimensions 2,3 et 4 valident les majorations démontrées. Nous présentons ensuite une approche de la méthode de marche aléatoire utilisant les techniques de réduction de variance précédentes. Nous proposons un algorithme de résolution de l'équation de diffusion, avec un coefficient de diffusion constant ou non-constant en espace. On utilise des particules échantillonnées suivant la distribution initiale, qui effectuent un déplacement gaussien à chaque pas de temps. On ordonne les particules suivant leur position à chaque étape et on remplace les nombres aléatoires qui permettent de calculer les déplacements par les points stratifiés utilisés précédemment. On évalue l'amélioration apportée par cette technique sur des exemples numériques Nous utilisons finalement une approche analogue pour la résolution numérique de l'équation de coagulation, qui modélise l'évolution de la taille de particules pouvant s'agglomérer. Les particules sont d'abord échantillonnées suivant la distribution initiale des tailles. On choisit un pas de temps et, à chaque étape et pour chaque particule, on choisit au hasard un partenaire de coalescence et un nombre aléatoire qui décide de cette coalescence. Si l'on classe les particules suivant leur taille à chaque pas de temps et si l'on remplace les nombres aléatoires par des points stratifiés, on observe une réduction de variance par rapport à l'algorithme MC usuel. / Monte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems from applied sciences and techniques. One estimates a quantity by repeated evaluations using N values ; the error of the method is approximated through the variance of the estimator. In the present work, we analyze variance reduction methods and we test their efficiency for numerical integration and for solving differential or integral equations. First, we present stratified MC methods and Latin Hypercube Sampling (LHS) technique. Among stratification strategies, we focus on the simple approach (MCS) : the unit hypercube Is := [0; 1)s is divided into N subcubes having the same measure, and one random point is chosen in each subcube. We analyze the variance of the method for the problem of numerical quadrature. The case of the evaluation of the measure of a subset of Is is particularly detailed. The variance of the MCS method may be bounded by O(1=N1+1=s). The results of numerical experiments in dimensions 2,3, and 4 show that the upper bounds are tight. We next propose an hybrid method between MCS and LHS, that has properties of both approaches, with one random point in each subcube and such that the projections of the points on each coordinate axis are also evenly distributed : one projection in each of the N subintervals that uniformly divide the unit interval I := [0; 1). We call this technique Sudoku Sampling (SS). Conducting the same analysis as before, we show that the variance of the SS method is bounded by O(1=N1+1=s) ; the order of the bound is validated through the results of numerical experiments in dimensions 2,3, and 4. Next, we present an approach of the random walk method using the variance reduction techniques previously analyzed. We propose an algorithm for solving the diffusion equation with a constant or spatially-varying diffusion coefficient. One uses particles, that are sampled from the initial distribution ; they are subject to a Gaussian move in each time step. The particles are renumbered according to their positions in every step and the random numbers which give the displacements are replaced by the stratified points used above. The improvement brought by this technique is evaluated in numerical experiments. An analogous approach is finally used for numerically solving the coagulation equation ; this equation models the evolution of the sizes of particles that may agglomerate. The particles are first sampled from the initial size distribution. A time step is fixed and, in every step and for each particle, a coalescence partner is chosen and a random number decides if coalescence occurs. If the particles are ordered in every time step by increasing sizes an if the random numbers are replaced by statified points, a variance reduction is observed, when compared to the results of usual MC algorithm.
|
Page generated in 0.1387 seconds