• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Chemistry of mesophase formation

Takekawa, T. January 1987 (has links)
No description available.
12

Heavy oil tar emulsions in the water gas process

Stolzenbach, Charles Frederick, January 1934 (has links)
Thesis (Ph. D.)--Columbia University, 1934. / Vita. Bibliography: p. 20.
13

A study of the cracking of the tar vapors and of the gas from the low temperature carbonization of coal ...

Crawford, Thomas Stephen, January 1931 (has links)
Thesis (Ph. D.)--Columbia University, 1931. / Vita. "Authorized preprint from copyrighted articles in Gas age-record, volume 68, numbers 5, 6, and 7, August 1, 8, and 15, 1931." Bibliography: p. 35.
14

Smouldering combustion of organic liquids in porous media for remediating NAPL-contaminated soils

Pironi, Paolo January 2010 (has links)
This research investigated the potential of smouldering combustion to be employed as a remediation approach for soil contaminated by non-aqueous phase liquids (NAPLs). Small-scale (~15 cm), proof-of-concept experiments were the first to demonstrate that organic liquids embedded within an inert soil matrix can be successfully smouldered. Intermediate-scale (~30 cm) column experiments examined in detail the behaviour of the combustion process including its relationship to mass and energy balance and the evolution of temperature profiles. In addition, detailed evaluations of environmental parameters (e.g., soil concentrations, gas emissions) were conducted. For the first time, it was demonstrated that NAPL smouldering combustion can be self-sustaining (i.e., propagation of the smouldering front after termination of the igniter) and self-terminating (i.e., natural extinction of the reaction after all of the NAPL is destroyed). More than 30 column sensitivity experiments quantified the broad range of process parameters - including contaminant type, contaminant mass, soil type, and oxidizer flow rates - within which the process was self-sustaining and essentially complete remediation was achieved (i.e. contaminant mass removal in excess of 99.5%). Maximum burning temperatures were observed in the range 600-1100 C. Average propagation velocities varied between 0.7e-4 and 1.2e-4 m/s. Intensity and velocity of the process were shown to be controlled by the rate at which oxidizer is delivered. Contaminant type and mass was observed to affect peak temperatures and propagation velocity by influencing the energy balance at the reaction front. Moreover, mass and energy balance models were demonstrated to provide reasonable predictions of the observed propagation velocities. Overall, this research introduced an entirely new approach to the remediation of NAPL-contaminated soils and, further, advanced the understanding of the mechanisms that control the underlying process of smouldering combustion of liquids.
15

In situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation

Forsey, Steven January 2004 (has links)
Coal tar, coal tar creosote and oily wastes are often present as subsurface contaminants that may migrate below the water table, leaving a widely distributed residual source of contaminants leaching to the ground water. <i>In situ</i> chemical oxidation is a potentially viable technology for the remediation of aquifers contaminated with creosote and coal tars. The oxidant of choice would be flushed through the contaminated area to oxidize aqueous contaminants and enhance the mass transfer of contaminants from the oil phase. A series of batch and column experiments were performed to assess the ability of a chemical oxidizing reagent to oxidize creosote compounds and to increase mass transfer rates. Results from the column experiments were then simulated using a reactive transport model that considered 12 different creosote compounds undergoing dissolution, oxidation and advective-dispersive transport. Three strong chemical oxidizing reagents, Fenton's Reagent, potassium persulfate with ferrous ions, and potassium permanganate were tested with batch experiments to determine their reactivity towards creosote compounds. All three reagents successfully decomposed aqueous creosote compounds and were able to reduce the mass of the monitored creosote compounds within the oil phase. However, both the Fenton's and persulfate reagents required large molar ratios of iron and peroxide because the precipitation of iron continually removed the iron catalyst from the aqueous phase. Fenton's and persulfate reagents could be used in systems that are allowed to become acidic to solubilize the iron, but the cost of adjusting the pH, potential impact on aquifer geochemistry and the short lived free radical reaction make these reagents less practical than KMnO4. KMnO4 oxidizes a wide variety of creosote compound, can be used at very high concentrations, and its concentration will not be reduced significantly as it moves through the zone of contamination. The feasibility of using potassium permanganate as an oxidizing reagent for <i>in situ</i> treatment of creosote residuals was investigated using batch column experiments. Column experiments were conducted at a neutral pH in a carbonate rich sand matrix with creosote at 8 % saturation. The columns were treated intermittently with simulated ground water or KMnO4 dissolved in simulated ground water (8 g/L) for 172 days. Under these experimental conditions the KMnO4 decreased the initial mass of the monitored creosote compounds by 36. 5%, whereas in the control column (no oxidizer) only 3. 9% was removed. To remove all of the monitored creosote compounds from the columns it was calculated that the volume needed would be 40 times less for the KMnO4 solution, compared to flushing alone with simulated ground water. To evaluate the potential effectiveness of <i>in situ</i> chemical oxidation at field sites, numerical model simulations need to incorporate relevant chemical oxidation rates to assess system performance and to provide design guidance. In-depth kinetic studies were performed to determine rate constants and to gain insight into the oxidation of creosote compounds with KMnO4. The study examined the kinetics of the oxidative treatment of a selected group of creosote/coal tar compounds in water using excess potassium permanganate and investigated the correlation between reactivity and physical/chemical properties of the organic pollutants. The oxidation of naphthalene, phenanthrene, chrysene, pyrene, 1-methylnapthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole, isopropylbenzene, ethylbenzene and methylbenzene closely followed first-order reaction kinetics, enabling calculation of second-order rate constants. Fluoranthene was only partially oxidized by permanganate and the oxidation of anthracene was too fast to be measured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene failed to react in this study. Comprehensive column experiments complemented by numerical modeling revealed an unequal enhancement of the removal of creosote compounds from the oil phase. For the more readily oxidizable compounds such as pyrene and naphthalene, a significant increase in the mass transfer rates was observed in the oxidation columns, compared to the oxidant free column. For non-oxidizable compounds such as biphenyl and dibenzofuran, an increase in the rate of mass removal was also observed in the oxidation columns, even though their aqueous concentrations were not reduced in the column. This was due to the rapid removal of the more readily oxidizable compounds from the oil, which increases the mole fraction of the non-oxidizable compounds. Thus according to Raoult's Law, the concentration in the aqueous phase becomes closer to its pure phase liquid solubility and its aqueous concentration increases. The most significant result of the experiments is the observed increase in the rate of removal of those compounds that have low aqueous solubilities and are readily oxidized, such as pyrene and fluorene. Compounds that have low aqueous solubilities and are not readily oxidizable, such as chrysene, may still take a long period of time to be removed, but the removal time is greatly reduced with oxidation compared to flushing the area with water alone.
16

In situ Chemical Oxidation of Creosote/Coal Tar Residuals: Experimental and Numerical Investigation

Forsey, Steven January 2004 (has links)
Coal tar, coal tar creosote and oily wastes are often present as subsurface contaminants that may migrate below the water table, leaving a widely distributed residual source of contaminants leaching to the ground water. <i>In situ</i> chemical oxidation is a potentially viable technology for the remediation of aquifers contaminated with creosote and coal tars. The oxidant of choice would be flushed through the contaminated area to oxidize aqueous contaminants and enhance the mass transfer of contaminants from the oil phase. A series of batch and column experiments were performed to assess the ability of a chemical oxidizing reagent to oxidize creosote compounds and to increase mass transfer rates. Results from the column experiments were then simulated using a reactive transport model that considered 12 different creosote compounds undergoing dissolution, oxidation and advective-dispersive transport. Three strong chemical oxidizing reagents, Fenton's Reagent, potassium persulfate with ferrous ions, and potassium permanganate were tested with batch experiments to determine their reactivity towards creosote compounds. All three reagents successfully decomposed aqueous creosote compounds and were able to reduce the mass of the monitored creosote compounds within the oil phase. However, both the Fenton's and persulfate reagents required large molar ratios of iron and peroxide because the precipitation of iron continually removed the iron catalyst from the aqueous phase. Fenton's and persulfate reagents could be used in systems that are allowed to become acidic to solubilize the iron, but the cost of adjusting the pH, potential impact on aquifer geochemistry and the short lived free radical reaction make these reagents less practical than KMnO4. KMnO4 oxidizes a wide variety of creosote compound, can be used at very high concentrations, and its concentration will not be reduced significantly as it moves through the zone of contamination. The feasibility of using potassium permanganate as an oxidizing reagent for <i>in situ</i> treatment of creosote residuals was investigated using batch column experiments. Column experiments were conducted at a neutral pH in a carbonate rich sand matrix with creosote at 8 % saturation. The columns were treated intermittently with simulated ground water or KMnO4 dissolved in simulated ground water (8 g/L) for 172 days. Under these experimental conditions the KMnO4 decreased the initial mass of the monitored creosote compounds by 36. 5%, whereas in the control column (no oxidizer) only 3. 9% was removed. To remove all of the monitored creosote compounds from the columns it was calculated that the volume needed would be 40 times less for the KMnO4 solution, compared to flushing alone with simulated ground water. To evaluate the potential effectiveness of <i>in situ</i> chemical oxidation at field sites, numerical model simulations need to incorporate relevant chemical oxidation rates to assess system performance and to provide design guidance. In-depth kinetic studies were performed to determine rate constants and to gain insight into the oxidation of creosote compounds with KMnO4. The study examined the kinetics of the oxidative treatment of a selected group of creosote/coal tar compounds in water using excess potassium permanganate and investigated the correlation between reactivity and physical/chemical properties of the organic pollutants. The oxidation of naphthalene, phenanthrene, chrysene, pyrene, 1-methylnapthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole, isopropylbenzene, ethylbenzene and methylbenzene closely followed first-order reaction kinetics, enabling calculation of second-order rate constants. Fluoranthene was only partially oxidized by permanganate and the oxidation of anthracene was too fast to be measured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene failed to react in this study. Comprehensive column experiments complemented by numerical modeling revealed an unequal enhancement of the removal of creosote compounds from the oil phase. For the more readily oxidizable compounds such as pyrene and naphthalene, a significant increase in the mass transfer rates was observed in the oxidation columns, compared to the oxidant free column. For non-oxidizable compounds such as biphenyl and dibenzofuran, an increase in the rate of mass removal was also observed in the oxidation columns, even though their aqueous concentrations were not reduced in the column. This was due to the rapid removal of the more readily oxidizable compounds from the oil, which increases the mole fraction of the non-oxidizable compounds. Thus according to Raoult's Law, the concentration in the aqueous phase becomes closer to its pure phase liquid solubility and its aqueous concentration increases. The most significant result of the experiments is the observed increase in the rate of removal of those compounds that have low aqueous solubilities and are readily oxidized, such as pyrene and fluorene. Compounds that have low aqueous solubilities and are not readily oxidizable, such as chrysene, may still take a long period of time to be removed, but the removal time is greatly reduced with oxidation compared to flushing the area with water alone.
17

Adsorptive removal of nitrogen from coal-based needle coke feedstocks using activated carbon

Madala, Sreeja. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains viii, 64 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 62-64).
18

Hydrogenation of naphthalene and coal tar distillate over Ni/Mo/Al₂O₃ catalyst in a trickle bed reactor

Bhagavatula, Abhijit. January 1900 (has links)
Thesis (M.S.)--West Virginia University, 2009. / Title from document title page. Document formatted into pages; contains xii, 119 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 114-119).
19

Förekomst och urlakning av PAH längs med väg 805, Jokkmokks kommun

Blom, Maria January 2018 (has links)
The purpose of this study was to determine if any amount of PAH (Polycyclic aromatic hydrocarbons) was leaching from the paved road surface of road 805 in Jokkmokk municipality. The study was also meant to determine which factors affected the leaching of PAH in the studied area.The surveyed road was divided into eight sections. Groundwater pipes were inserted into drilled holes, three in each section. Samples from soil, water and asphalt were collected from each section and analyzed for its content of PAH. The groundwater level was measured before each sampling. Some soil samples were analyzed for TOC (total organic carbon) and all the water samples for DOC (dissolved organic carbon). The results showed that PAH was leaching in very different amounts. There was a similarity in the amount of coal tar in the road surface and the amount of PAH in most sections. Although in one section the asphalt sample showed low amount of coal tar but high amount of PAH in the soil- and water samples. This anomaly could not be explained - the assumption was that the sampling had been incorrectly handled. The pollution in the surveyed area is assumed to be caused by the road surface and tire wear. Further studies are necessary to determine with certainty how PAH is leaching in different conditions and with different road pavements.
20

The synthesis of 10-(4-hydroxymethylphenyl)-1,2-Benzanthracene

Lewis, Claude Irenius January 1959 (has links)
A. The alcohol, 10-(4’-hydroxymethylphenyl)-1,2-benzanthracene, was prepared by the reduction or 10-(4’-carboxyphenyl)- 1,2- benzanthracene. The structure or the alcohol was proven by: (1) Ultraviolet spectra (2) Infrared spectra (3) Elementary analysis (4) Preparation or the benzoate B. The preparation of the Grignard reagent of 10-(4’-bromophenyl)-1,2-benzanthracene was unsuccessful. An explanation of this anomaly was not discovered. C. The Grignard reagent or 2-(1-naphthylmethyl)-chloro-benzene was prepared by the use or tetrahydrofuran and "entrainment" with methyl iodide. / M.S.

Page generated in 0.0261 seconds