• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 39
  • 39
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Coal tar pitch volatiles exposure in a petrochemical refinery plant: a task based exposure assessment

Makgatho, Michael 23 March 2009 (has links)
This study describes tripper car operators’ exposure to coal tar pitch volatiles at an operation at Coal Distribution Steam Plant that involves the use of coal tar mix to feed as fuel the steam generating boilers. A cross-sectional task-based exposure assessment approached was used. The objectives of this study were to monitor tripper car operators’ exposures to coal tar pitch volatiles as benzene soluble fraction and to then compare the measured concentrations with the occupational exposure limit. The general aim of the study was to accumulate data about employee exposure to coal tar pitch volatiles in South African Petrochemical Refineries. A total of 56 samples was collected and analyzed for coal tar pitch volatiles – benzene soluble fraction. Of the 56 samples, 41 were personal samples collected on the breathing zones of the workers and 15 samples were field blank samples. The method used for the collection of the samples was the United States Department of Labor, Occupational Safety & Health Administration Method 58. In South Africa the available occupational exposure limit for coal tar pitch volatiles is the time weighted average occupational exposure limit – recommended limit for cyclohexane soluble fraction which is 0.14 mg/m3. For the evaluation of personal exposure to compare with the occupational exposure limit, the UK Health & Safety Executive Method for the Determination of Hazardous Substances (MDHS) 68 was adopted in the past to monitor workplace air. This method was since withdrawn by the Health & Safety Executive after research conducted by the Health & Safety Laboratory revealed that unacceptable variability were introduced into the method due to the small mass changes involved and the difficulty in accurately weighing the filters before and after the cyclohexane extraction. Due to the unavailability of a suitable and acceptable method to assess workers’ exposure to coal tar pitch volatiles – cyclohexane soluble fraction to compare to the South African occupational exposure limit, the Occupational Safety & Health Administration Method Number 58 was used during this study for the collection of the samples. This is a validated method. This method follows a similar approach as the MDHS 68 however benzene is used instead of cyclohexane during sample extraction. The Occupational Safety and Health Administration have the permissible exposure limit of 0.2 mg/m3 for coal tar pitch volatiles – benzene soluble fraction to use when assessing worker exposure. This limit was used during this study for assessing tripper car exposure to coal tar pitch volatiles. No coal tar pitch volatiles were detected on the samples collected during the study. The results revealed concentrations below detection limit of the test laboratory analytical method. The detection limit used thereof was 0.1 mg per sample. The tripper car operators were therefore exposed to coal tar pitch volatiles at concentrations that complied with the permissible exposure limit 0.2 mg/m3. The hypothesis of this study was that the tripper car operators at Coal Distribution Steam Plant are over exposed to coal tar pitch volatiles – benzene soluble fraction. This hypothesis is therefore rejected. Based on the results derived from this study it is recommended that further research studies be conducted specifically with focus on different methods of exposure assessment to workers exposed to coal tar pitch volatiles in South African Petrochemical Refinery Plants. - ii - Since the method used was limited to the particulate phase of the contaminant exposure, with the gaseous phase of exposure to coal tar pitch volatiles only looked at when the PEL is exceeded. A method that can measure both the gaseous and particulate phase of the contaminant must be investigated.
22

Polycyclic Aromatic Hydrocarbon Release from Pavement Rejuvenators Due to Rolling Wheel Contact: An Investigation Using a Model Mobile Load Simulator

Anderson, Joshua 23 April 2019 (has links)
Polycyclic aromatic hydrocarbon (PAH) compounds, which are common to coal tar and coal-tar-based products, are ubiquitous environmental contaminates with carcinogenic effects to human health and aquatic life. Transport of PAHs via solid phase particulate motion, gaseous phase volatilization, and aqueous phase dissolution into urban waterbodies of PAH compounds from coal-tar-based pavement sealant products has been studied. Pavement rejuvenators are products applied to increase the usable life of pavement. Coal-tar-based rejuvenators contain a significantly larger mass fraction of coal-tar with respect to coal-tar-based sealants, but pavement rejuvenators have not been as extensively studied as pavement sealants. Chemical analysis of detached pavement material treated with coal-tar-bases, asphalt-based, and bio-based rejuvenators was conducted with gas chromatography – mass spectrometry (GC/MS) analysis for 16 PAH compounds and two aromatic heterocyclic organic compounds following extraction with methylene chloride. Detached pavement material was collected from 19 simulated asphalt surface abrasion experiments that used a model mobile load simulator (MMLS) test apparatus that replicated surface challenges from vehicular traffic. The MMLS test apparatus configuration allowed asphalt disc samples treated with different rejuvenation products, to be tested and for detached material to be collected and quantified prior to GC/MS analysis. Test cases evaluated the influence of rejuvenation product type and cure time, as well as the effect of sand application (simulating sand application during slippery winter storm conditions) had on detached particulate and ultimate PAH compound loading. The average mass of particulate detachment from samples following a 48 hour cure time, for the asphalt-based and coal-tar-based rejuvenator products were 0.347 g and 0.480 g, respectively. This mass of detached material was lower than that from pavement treated with bio-based rejuvenator and the control (not treated), which had 4.858 g and 2.567 g of detached particulate material, respectively. When the product cure time was increased to three weeks, which was significantly long enough to capture effects of compound volatilization, average particulate detachment increased to 0.882 g for the coal-tar-based rejuvenator and decreased for the bio-based rejuvenator to 2.600 g. Six tests performed with a single application of winter storm sand after a 48 hour product cure time showed an increase in average particulate detachment to 1.450 g and 0.617 g for pavement treated with the asphalt-based and coal-tar-based rejuvenators, respectively. Conversely, under the same conditions, a reduction in average detached particulate to 3.749 g was observed for the bio-based product. Detached particulate material quantities for each test case were used with the respective cumulative concentration of 16 PAH compounds quantified to make an assessment on the potential PAH compound contamination via solid phase particle transport. The average PAH compound concentration in particulate detached from pavement treated with a coal-tar-based rejuvenator was 3062.8 mg PAH per kg of particulate. This was an order of magnitude higher than the average PAH concentration measured in particulate detached from the two control pavement samples and the two asphalt-based samples after a 48 hour cure time, which were 322.1 and 508.1 mg PAH per kg detached particulate, respectively. PAH compound concentrations were also normalized by the surface area of pavement treated with a rejuvenator to determine the potential PAH compound contamination per unit area. Normalized results for each rejuvenator type were averaged to make an overall evaluation of the potential rejuvenator specific PAH compound loading. The coal-tar-based, bio-based, and asphalt-based rejuvenators had a normalized cumulative solid-phase PAH compound release of 2.35, 0.88, and 0.17 mg PAH per square foot of pavement rejuvenated, respectively. In addition, carbazole was quantified in all pavement samples treated with the coal-tar-based rejuvenator at an average concentration of 125.6 mg carbazole per kg detached particulate. Acridine was quantified in detached particulate from five of seven coal-tar-based test performed at an average concentration (excluding non-detection samples) of 42.1 mg acridine per kg detached particulate.
23

Long-Term Fate of an Emplaced Coal Tar Creosote Source

Fraser, Michelle J January 2007 (has links)
An emplaced source of coal tar creosote within the sandy Borden research aquifer has provided an opportunity to document the long term (5140 days) natural attenuation for this complex mixture. Plumes of dissolved chemicals were produced by the essentially horizontal groundwater flowing at about 9 cm/day. Eleven chemicals were extensively sampled seven times using a monitoring network of ~280 14-point multilevel samplers. A model of source dissolution using Raoult’s Law adequately predicted the dissolution of nine of eleven compounds analysed. Mass transformation has limited the extent of the plumes as groundwater flowed more than 500 m yet the plumes are no longer than 50 m. Phenol and xylenes were removed and naphthalene was attenuated from its maximum extent on day 1357. Some compound plumes reached an apparent steady state and the plumes of other compounds (dibenzofuran and phenanthrene) are expected to continue to expand due to an increasing mass flux and limited degradation potential. Biotransformation is the major process controlling natural attenuation at the site. The greatest organic mass loss is associated with the high solubility compounds. However, the majority of the mass loss for most compounds has occurred in the source zone. Oxygen is the main electron acceptor yet the amount of organics lost cannot be accounted for by aerobic mineralization or partial mineralization alone. After 10 years the source zone was treated with permanganate in situ to reduce the flux of contaminants into the dissolved plume and to permit natural attenuation to further reduce the plume extent. A sufficient mass of permanganate was injected to oxidize ~10% of the residual source. Laboratory experiments demonstrated that eight of ten of the study compounds were readily oxidized by permanganate. Once treated oxidized compounds displayed a reduced plume mass and mass discharge while they migrated through the monitoring network. Once beyond the monitoring network the mass discharge and plume mass of these compounds returned to pre-treatment trends. Non-reactive compounds displayed no significant decrease in mass discharge or plume mass. Overall the partial in situ chemical oxidation of the coal tar creosote source produced no long-term effect on the dissolved plumes emanating from the source.
24

Long-Term Fate of an Emplaced Coal Tar Creosote Source

Fraser, Michelle J January 2007 (has links)
An emplaced source of coal tar creosote within the sandy Borden research aquifer has provided an opportunity to document the long term (5140 days) natural attenuation for this complex mixture. Plumes of dissolved chemicals were produced by the essentially horizontal groundwater flowing at about 9 cm/day. Eleven chemicals were extensively sampled seven times using a monitoring network of ~280 14-point multilevel samplers. A model of source dissolution using Raoult’s Law adequately predicted the dissolution of nine of eleven compounds analysed. Mass transformation has limited the extent of the plumes as groundwater flowed more than 500 m yet the plumes are no longer than 50 m. Phenol and xylenes were removed and naphthalene was attenuated from its maximum extent on day 1357. Some compound plumes reached an apparent steady state and the plumes of other compounds (dibenzofuran and phenanthrene) are expected to continue to expand due to an increasing mass flux and limited degradation potential. Biotransformation is the major process controlling natural attenuation at the site. The greatest organic mass loss is associated with the high solubility compounds. However, the majority of the mass loss for most compounds has occurred in the source zone. Oxygen is the main electron acceptor yet the amount of organics lost cannot be accounted for by aerobic mineralization or partial mineralization alone. After 10 years the source zone was treated with permanganate in situ to reduce the flux of contaminants into the dissolved plume and to permit natural attenuation to further reduce the plume extent. A sufficient mass of permanganate was injected to oxidize ~10% of the residual source. Laboratory experiments demonstrated that eight of ten of the study compounds were readily oxidized by permanganate. Once treated oxidized compounds displayed a reduced plume mass and mass discharge while they migrated through the monitoring network. Once beyond the monitoring network the mass discharge and plume mass of these compounds returned to pre-treatment trends. Non-reactive compounds displayed no significant decrease in mass discharge or plume mass. Overall the partial in situ chemical oxidation of the coal tar creosote source produced no long-term effect on the dissolved plumes emanating from the source.
25

The quality of binder-filler interfaces in carbon electrodes

Ogden, Gary N. January 1995 (has links)
The aims of this research project were to identify and classify the binder-filler interfaces formed in carbon electrodes and to determine the effects of the interfacial quality on important electrode properties. The effects of raw materials and some fabrication process variables on interfacial characteristics and quality of laboratory produced test electrodes were also studied, and the development of binder-filler interfaces during the carbonisation process followed. Electrode quality was assessed by measurement of density, electrical resistivity and tensile strength. Pore structural data were also obtained by using a computerised image analysis system allied to an optical microscope. Interface quality data were obtained by examining etched surfaces in a scanning electron microscope and classifying the binder-filler interface observed into one of five categories. The category depending on the extent of contact between the binder and filler. Accordingly, test electrodes were produced from combinations of four filler carbons, comprising three grades of calcined petroleum coke and an electro-calcined anthracite, and four coal-tar binder pitches which varied in the type and quantity of insoluble matter content. Examination of these test electrodes showed that the nature of the filler carbon used had a dominant influence on the quality of the interface formed, as assessed by this technique. A combination of one filler carbon and one binder pitch was used to study the effects of some fabrication process variables. These were pitch content and, mixing time and temperature. Of these process variables, pitch content and mixing temperature were found to have the major effects on the binder-filler interface and electrode quality. Investigation of the development of the binder-filler interfaces during the carbonisation process showed three distinct zones of interface development and transformation. These zones were associated with three temperature dependent mechanisms; thermal stress relaxation between 200-350 degrees C, volatile gas evolution from coal-tar pitch decompositionb etween3 50-600 degrees C and stresses induced by thermal contraction of the binder phase between 600-1000 degrees C.
26

Characterization of medium temperature gasifier pitch

Papole, Gedion John 15 November 2012 (has links)
Pitches are important precursors for carbon materials. They are usually obtained by thermal treatment of petroleum and coal fractions. Pitches have higher carbon content and are capable of developing into graphitisable carbons upon heat treatment. Petroleum pitches are generally less aromatic than coal tar pitches. Medium-temperature gasifier pitch (MTP), from Sasol’s Lurgi process, is a potential precursor for graphitisable carbon. MTP showed a high degree of solubility in several organic solvents, namely dimethylformamide, quinoline, tetrahydrofuran, pyridine, morpholine, benzene, toluene, xylene and acetone. It was virtually insoluble in n-hexane, cyclohexane, cyclohexanol, acetonitrile and formamide. MTP pitch was partially soluble in methanol and had a solubility limit of 40 g/l at ambient temperature. MTP samples were spiked with boron to make 1000 ppm B-containing samples. The boron distribution coefficient was defined as the ratio of the boron contents of the insoluble pitch residue to the methanol-soluble pitch extracts, using a mass balance. This justified the decision to define the apparent boron partition coefficients based on the boron content of the recovered pitch residues. 4-(dibenzofuranyl) boronic acid (DBA), 2 phenoxyphenyl boronic acid (PBA), p-tolylboronic acid (TBA) and phenylboronic acid (PLA) were retained the most in the residues after methanol extraction. Over 500 ppm of PBA, TBA and PLA were retained in the pitch residues following methanol extraction. The results showed that methanol extracted substituted boron acid model compounds. Methanol dissolved mostly low molecular mass/aliphatic species, which are not important for graphitisation. The thermomechanical analysis (TMA) results showed that MTP has a low softening point compared with the methanol-insoluble (MI) fractions. The attenuated total reflectance (ATR) results showed that the benzene-insoluble (BI), toluene-insoluble (TI) and MI fractions had more intense aromatic C–H stretching peaks than their corresponding soluble fractions. Elemental analysis and the solid-state 13C nuclear magnetic resonance (NMR) results revealed that the benzene-, toluene- and methanol-insoluble fractions are more aromatic than their corresponding soluble fractions. The order of the aromaticity index for the insoluble fractions was as follows: MTP<MI<TI<BI. Matrix-assisted laser desorption (MALDI) analysis of the mass distribution revealed that the majority of compounds in MTP and its soluble and insoluble fractions were in the low molecular mass range, i.e. 190–388 atomic mass units. The thermal analysis results showed that the benzene-, toluene- and methanol-insoluble fractions were thermally stable and had higher carbon yields than their corresponding soluble fractions. MTP was thermally more stable than the methanol-, toluene- and benzene-soluble fractions. Evaluation of the polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry (GC-MS) showed that the methanol-insoluble fractions had lower PAH contents than MTP and MI.   Copyright / Dissertation (MSc)--University of Pretoria, 2012. / Chemistry / unrestricted
27

Rheological Behaviour and Characterisation of Pitch-Based Carbon Precursors

Ramjee, Shatish January 2015 (has links)
Pitch material is an important precursor in the production of carbon bre, carbon composites and synthetic graphite. It has a complex transformation during pyrolysis which incorporates the separation of a liquid crystalline phase, known as mesophase. This thesis attempts to enhance the understanding of this change in composition, structure and its resultant behaviour. In this study, two pitches, a coal-tar pitch (MP110) and a (SASOL) Lurgi-gasi er pitch, are pyrolised to produce material at di erent stages of mesophase development. These pitches produce mesophase of di erent mosaic type and therefore also resultant coke. The MP110 was thermally treated up to a temperature of 437 and produced anisotropic pitch (which still contains signi cant particulate matter). The nucleated mesophase spheres did not coalesce to produce domains; this behaviour being attributed to the particulate material. The SASOL pitch produced a di erent type of mesophase material. The mesophase produced was of ne mosaic domains; a sample with continuous mesophase regions was also produced with a mesophase content of approximately 60% (by volume). The aromatic starting material of MP110 produced higher quinolone and toluene insoluble (QI and TI) compounds after pyrolysis. This was also observed in the increase of C/H (molar ratio of carbon to hydrogen). The more aliphatic SASOL starting pitch showed similar trends to its MP110 counterparts with respect to QI (quinoline insolubles), TI (toluene insolubles) and C/H. The glass transition and associated temperatures of the pitches were analysed via thermal mechanical analysis (TMA), dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The techniques showed consistency between instruments, with TMA providing the likeliest re ection of the true thermodynamic glass transition temperature. The loss of volatile components was accompanied by an increase in glass transition temperature (observed in conjunction with C/H and mesophase content). For anisotropic MP110 pitches, two relaxations were observed, one for the isotropic fraction, the other for the mesophase. No such behaviour was easily observed for the SASOL pitches. Rheological measurements were obtained to understand the behaviour of the pitches. Measurements were limited to a speci c viscosity range. The measurements of the samples were therefore made at di erent temperatures. The relation of the measurement temperature to the glass transition temperature is thus of extreme importance. The temperature governs the state of the structure; whether it be suspension, emulsion or gel. Oscillatory shear experiments were undertaken for the pitch material. Predominantly isotropic material showed transition from viscoelastic solid to viscoelastic liquid as previously observed in pitch material. The anisotropic MP110 pitches did not allow for the production of mastercurves due to non-linear viscoelastic e ects caused by the softening of mesophase. This being the transition from a suspension of hard spheres to an emulsion of deformable droplets (depending on temperature). For the higher mesophase content anisotropic SASOL pitches, mastercurves were produced; it had a similar shape to the isotropic pitches (at temperatures closer to the glass transition), but signi cantly increased elasticity was observed at higher temperatures. This phenomenon supported the hypothesis of a strong interaction between the components and phases of the pitch, and thus the possibility of gelled systems. Rotational shear-rheometry was also utilised and showed that isotropic pitch material behaves as a predominantly isoviscous uid. The anisotropic MP110 pitches of approximately 30% mesophase showed high- and low-shear viscosity plateau uid behaviour. This being caused by the breakup of agglomerated mesophase spheres. This was tested by the implementation of the Krieger- Dougherty suspension model. The possibility of droplet deformation was investigated for these samples by utilising a Krieger-Douherty based emulsion analogue, which con- rmed suspension like behaviour (at the measured temperatures). MP110 samples with more mesophase were measured at higher temperatures. Their behaviour is more akin to Power-law shear-thinning behaviour. Being further away from the continuous isotropic phase glass transition temperature, the behaviour observed is similar to that of emulsions. SASOL anisotropic pitches showed signi cant yielding upon shear, which is attributed to structure breakdown. This behaviour is appropriately described by a yield stress, shearthinning model such as Herschel-Bulkley. Measurements of viscosity for these samples were made at temperatures signi cantly further from the glass transition temperature as compared to that of the MP110 pitches. This corroborates strong interaction between its components. The observed shapes of the curve, at temperatures of measurement, support the notion of a gel structure. This behaviour is rst proposed via the complex structure observed (clusters of ne mosaic mesophase domains) and supported by strong interaction of the components inferred from obtained rheological properties. / Thesis (PhD)--University of Pretoria, 2015. / tm2015 / Chemical Engineering / PhD / Unrestricted
28

A Study of the Thermal Decomposition Products of Lignite

Tomlinson, Julian B. January 1941 (has links)
Lignite is a low grade of coal widely distributed throughout the world. A complete analysis of lignite has not been made, due to the difficulty encountered in the separation of the complex organic compounds bonded therein.
29

Effects of the chemical composition of coal tar pitch on dimensional changes during graphitization / Lay Shoko

Shoko, Lay January 2014 (has links)
Coal can be converted to different chemical products through processes such destructive distillation. The destructive distillation of coal yields coke as the main product with byproducts such as coal tar pitch (CTP). CTP has a wide range of applications, especially in the carbon-processing industries. Typical applications include the manufacture of anodes used in many electrochemical processes, as well as Söderberg electrodes used in different ferroalloy processes. Söderberg electrodes are made from the thermal treatment of Söderberg electrode paste. The Söderberg electrode paste is a mixture of CTP (binding material) and coke/calcined anthracite (filler). Söderberg electrodes are characterised by a baking isotherm temperature. This temperature is located in the baking zone of the Söderberg electrode system. In the baking zone, the liquid paste is transformed into a solid carbonaceous material. Knowing the baking isotherm temperature is essential as it will ensure the safe, profitable and continuous operation of submerged arc furnaces. Thermomechanical analysis (TMA) was used in this study to determine the baking isotherm temperature of CTP samples. The baking isotherm temperature for all samples was found to lie between 450 and 475 °C irrespective of the initial chemical and physical composition of the CTP. TMA was also used to measure the dimensional changes that take place in the binding material (CTP) at temperatures above the baking isotherm. The dimensional changes of 12 CTP samples when heated from room temperature up to a maximum of 1300 °C were measured. The results indicated that all CTP samples shrank by approximately 14% in the first heating and cooling cycle. The second and third heating and cooling cycles gave a small change in dimensions of approximately 2% for all samples. The significant change in dimensions observed for all CTP samples during the first TMA thermal treatment cycle was attributed to the structural rearrangement that takes place within the carbonaceous material. The structural ordering of all CTP samples thermally treated was evaluated by X-ray diffractometry (XRD). XRD is widely used in the determination of crystallinity/amorphousness of carbonaceous materials, interlayer distance (d-spacing), as well as the degree of ordering (DOG) in a given material. For comparison of structural ordering, XRD analysis was also performed on raw (as-received) CTPs, as well as CTPs thermally treated at 475 and 1300 °C. Prebaked electrode graphite was also analysed. From the XRD results, raw CTP was found to be amorphous with no significant ordering. The interlayer spacing (d002) for all raw CTP samples averaged 3.70 Å, compared to 3.37 Å for prebaked electrode graphite. CTPs thermally treated at 1300 °C had a d-spacing of 3.51 Å. The DOG of raw samples was found to be negative which was indicative of the amorphousness of the raw CTP. The DOG increased with an increase in thermal treatment temperature, as was seen from the DOG of CTPs thermally treated at 1300 °C, which was calculated to be approximately -81% for all 12 samples. The calculated DOG for prebaked electrode graphite was 81%. Prior to determining the baking isotherm temperature, as well as the changes in dimensions during thermal treatment, the chemical compositions of the 12 CTP samples were determined. In the chemical composition determination, fundamental properties such as softening point (SP), coking value (CV), toluene and quinoline insolubles (TI and QI, respectively) were evaluated. This was in addition to proximate and ultimate analysis. The information obtained from this diverse characterisation showed significant differences in the chemical composition of the 12 CTPs. By making use of multi-linear regression analysis (MLR), it was possible to predict or calculate less commonly determined characteristics (CV, TI and QI) from the more commonly obtained parameters (proximate and ultimate analysis parameters). It was found that MLR could be used successfully to calculate CV and TI, but less so for QI. Additional chemical composition of CTP was determined by analytical techniques such as Fourier Transform Infra-Red spectroscopy (FT-IR) and Nuclear Magnetic Resonance spectroscopy (NMR). Results from the FT-IR analysis showed that the spectra for all 12 raw CTPs were similar, with differences only being in the FT-IR band intensities. The differences in FT-IR band intensities were supported by NMR analysis data, which gave quantitative information on the different structural parameters found in all CTPs. The structural composition of CTPs changed during thermal treatment, as was shown by the FT-IR analysis performed on raw CTPs samples, CTPs thermally treated at 475, 700, 1000 and 1300 °C, as well as prebaked electrode graphite. / PhD (Chemistry), North-West University, Potchefstroom Campus, 2014
30

Effects of the chemical composition of coal tar pitch on dimensional changes during graphitization / Lay Shoko

Shoko, Lay January 2014 (has links)
Coal can be converted to different chemical products through processes such destructive distillation. The destructive distillation of coal yields coke as the main product with byproducts such as coal tar pitch (CTP). CTP has a wide range of applications, especially in the carbon-processing industries. Typical applications include the manufacture of anodes used in many electrochemical processes, as well as Söderberg electrodes used in different ferroalloy processes. Söderberg electrodes are made from the thermal treatment of Söderberg electrode paste. The Söderberg electrode paste is a mixture of CTP (binding material) and coke/calcined anthracite (filler). Söderberg electrodes are characterised by a baking isotherm temperature. This temperature is located in the baking zone of the Söderberg electrode system. In the baking zone, the liquid paste is transformed into a solid carbonaceous material. Knowing the baking isotherm temperature is essential as it will ensure the safe, profitable and continuous operation of submerged arc furnaces. Thermomechanical analysis (TMA) was used in this study to determine the baking isotherm temperature of CTP samples. The baking isotherm temperature for all samples was found to lie between 450 and 475 °C irrespective of the initial chemical and physical composition of the CTP. TMA was also used to measure the dimensional changes that take place in the binding material (CTP) at temperatures above the baking isotherm. The dimensional changes of 12 CTP samples when heated from room temperature up to a maximum of 1300 °C were measured. The results indicated that all CTP samples shrank by approximately 14% in the first heating and cooling cycle. The second and third heating and cooling cycles gave a small change in dimensions of approximately 2% for all samples. The significant change in dimensions observed for all CTP samples during the first TMA thermal treatment cycle was attributed to the structural rearrangement that takes place within the carbonaceous material. The structural ordering of all CTP samples thermally treated was evaluated by X-ray diffractometry (XRD). XRD is widely used in the determination of crystallinity/amorphousness of carbonaceous materials, interlayer distance (d-spacing), as well as the degree of ordering (DOG) in a given material. For comparison of structural ordering, XRD analysis was also performed on raw (as-received) CTPs, as well as CTPs thermally treated at 475 and 1300 °C. Prebaked electrode graphite was also analysed. From the XRD results, raw CTP was found to be amorphous with no significant ordering. The interlayer spacing (d002) for all raw CTP samples averaged 3.70 Å, compared to 3.37 Å for prebaked electrode graphite. CTPs thermally treated at 1300 °C had a d-spacing of 3.51 Å. The DOG of raw samples was found to be negative which was indicative of the amorphousness of the raw CTP. The DOG increased with an increase in thermal treatment temperature, as was seen from the DOG of CTPs thermally treated at 1300 °C, which was calculated to be approximately -81% for all 12 samples. The calculated DOG for prebaked electrode graphite was 81%. Prior to determining the baking isotherm temperature, as well as the changes in dimensions during thermal treatment, the chemical compositions of the 12 CTP samples were determined. In the chemical composition determination, fundamental properties such as softening point (SP), coking value (CV), toluene and quinoline insolubles (TI and QI, respectively) were evaluated. This was in addition to proximate and ultimate analysis. The information obtained from this diverse characterisation showed significant differences in the chemical composition of the 12 CTPs. By making use of multi-linear regression analysis (MLR), it was possible to predict or calculate less commonly determined characteristics (CV, TI and QI) from the more commonly obtained parameters (proximate and ultimate analysis parameters). It was found that MLR could be used successfully to calculate CV and TI, but less so for QI. Additional chemical composition of CTP was determined by analytical techniques such as Fourier Transform Infra-Red spectroscopy (FT-IR) and Nuclear Magnetic Resonance spectroscopy (NMR). Results from the FT-IR analysis showed that the spectra for all 12 raw CTPs were similar, with differences only being in the FT-IR band intensities. The differences in FT-IR band intensities were supported by NMR analysis data, which gave quantitative information on the different structural parameters found in all CTPs. The structural composition of CTPs changed during thermal treatment, as was shown by the FT-IR analysis performed on raw CTPs samples, CTPs thermally treated at 475, 700, 1000 and 1300 °C, as well as prebaked electrode graphite. / PhD (Chemistry), North-West University, Potchefstroom Campus, 2014

Page generated in 0.0549 seconds