• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 21
  • 15
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Biogenic silica and diatom centricpennate ratios as indicators of historical coastal pollution

Spasojević, Zorana January 2002 (has links)
No description available.
82

Effects of coastal topography on physiology, behaviour and genetics of indigenous (Perna perna) and invasive (Mytilus galloprovincialis) mussels

Nicastro, Katy R January 2008 (has links)
Organisms inhabit environments that have many dimensions, each of which can vary temporally and spatially. The spatial-temporal variations of environmental stressors and disturbances may have major but different effects on indigenous and invasive species, favouring either of them at different times and places. The invasive mussel Mytilus galloprovincialis invaded the South African coast 30 years ago and, on the south coast of South Africa, it now competes and co-exists with the indigenous Perna perna in the lower eulittoral zone (referred to here as the mussel zone) The invasive and indigenous species dominate the upper and the lower mussel zones respectively, while the two co-exist in the mid-zone. My results show that intertidal mussels experience, and respond to, spatial and temporal fluctuations of several biotic and abiotic stressors. The invasive and the indigenous species adopt different strategies when reacting to environmental factors and their physiological and behavioural responses vary in time and in different habitats as different pressures become of overriding importance. Attachment strength of both species decreased in summer and increased in winter, and was higher on the open coast than in bays for both species, showing a strong positive correlation with wave force in time and space. P. perna had significantly higher attachment strength than M. galloprovincialis but, contrary to previous studies, the difference in gonad index between the two species varied according to the habitat. In bay habitats, M. galloprovincialis had a higher maximum reproductive effort than P. perna, however, on the open coast, there was no significant difference between the two species, suggesting that for the invasive species wave action is a limiting factor not only in terms of the attachment strength but also of energy availability for reproductive tissue development. Major spawning events occurred during periods of low wave action while minor spawning coincided with periods of intense hydrodynamic stress. On the open coast, gonad index was negatively correlated with attachment strength for both species while, in bays, there was no correlation between these two factors for either. The two species also showed different behaviour. In the field, M. galloprovincialis moved significantly more than P. perna over a period of six months. The higher mobility of the invasive species was also confirmed in the laboratory where, in general, M. galloprovincialis formed clumps more readily than P. perna. Taken collectively, these results suggest that channelling more energy into attachment strength limits reproductive tissue development and that, while the indigenous species invests more in byssal production, the invasive species adopts a more dynamic strategy looking for aggregation or a safer arrangement. Higher endolithic infestation and a greater expression of heat shock proteins (Hsps) in mussel populations on the open coast than in bays indicate that this habitat is a more stressful environment not only in terms of wave action. Endolith damaged mussels had significantly lower attachment strengths and condition indices than clean mussels, probably due to the need to channel energy into shell repair. The constant shell repair and expression of Hsps typical of open coast populations are energetically demanding processes. These observations suggest that on the open coast, mussels are subjected to more severe energetic constraints than in bay habitats. Wave and sand stress fluctuated seasonally with the former having a greater effect on mussel mortality on the open coast and the latter a higher impact on bay populations. Overall, mussel mortality rates were higher on the open coast than in bays. My results show that populations on the open coast had fewer private haplotypes and less genetic endemism than those inside bays. Gene flow analysis showed the relatively stable bay habitats act as source populations with greater genetic migration rates out of bays than into them. These differences in genetic structure on scales of las of kilometers show that coastal configuration strongly affects selection, larval dispersal and haplotype diversity. Environmental gradients that are key factors in species distribution over large geographical scales can also be responsible for micro-scale distributions. My results show that M. galloprovincialis colonizes the upper mussel zone where temperature is high, but is less tolerant to this stressor and has to maintain a high expression of Hsps. This suggests that temperature is probably a limiting factor in its invasion towards the sub-tropical east coast. There are inter- and intra-specific differences in responses to the environment which highlight the efforts of M. galloprovincialis and P. perna to optimize resource utilization for survival and reproduction. Determining these differences is crucial to understanding patterns of co-existence between competing indigenous and invasive species.
83

The zonation of coastal dune plants in relation to sand burial, resource availability and physiological adaptation

Gilbert, Matthew Edmund January 2008 (has links)
When considering the large amount of work done on dune ecology, and that a number of the classical ecological theories originate from work on dunes, it is apparent that there remains a need for physiological and mechanistic explanations of dune plant phenomena. This thesis demonstrated that in the extreme coastal environment dune plants must survive both high rates of burial (disturbance), and low nutrient availability (stress). The ability of four species to respond to these two factors corresponded with their position in a vegetation gradient on the dunes. A low stem tissue density was shown to enhance the potential stem elongation rate of buried plants, but reduced the maximum height to which a plant could grow. Such a tradeoff implies that tall light-competitive plants are able to survive only in stable areas, while burial responsive mobile-dune plants are limited to areas of low vegetation height. This stem tissue density tradeoff was suggested as the mechanism determining the zonation that species show within the dune vegetation gradient present at various sites in South Africa. Finally, detailed investigations of dune plant ecophysiology found that: 1) The resources used in the response to burial derive from external sources of carbon and nitrogen, as well as simple physiological and physical mechanisms of resource allocation. 2) The leaves of dune plants were found to be operating at one extreme of the photosynthetic continuum; viz efficient use of leaf nitrogen at the expense of water loss. 3) Contrary to other ecosystems, the environmental characteristics of dunes may allow plants to occupy a high disturbance, high stress niche, through the maintenance of lowered competition. 4) At least two mobile-dune species form steep dunes, and are able to optimise growth, on steeper dunes, such that they have to grow less in response to burial than plants that form more shallow dunes. In this thesis, it was shown that the link between the carbon and nitrogen economies of dune plants was pivotal in determining species distributions and survival under extreme environmental conditions. As vast areas of the world’s surface are covered by sand dunes these observations are not just of passing interest.
84

Morphology, patterns and processes in the Oyster Bay headland bypass dunefield, South Africa / Investigation of the relationship between morphology, patterns and processes in a headland bypass dunefield, in the Eastern Cape, South Africa

McConnachie, Lauren Bernyse January 2013 (has links)
Studies of the dunefield systems crossing the Cape St. Francis headland in the Eastern Cape have focused on the role that wind plays in sediment transfer in coastal dunefield systems, with limited consideration of the role of water. The aim of this study was to improve understanding of the morphology, processes and patterns within the Oyster Bay HBD system, focussing particularly on surface water and groundwater interactions and the role of surface water in sediment transfer across the dunefield system. An extensive field survey was conducted, to collect related data, complimented by spatial and temporal analysis of the study area using GIS. The key findings from this research were the apparent differences between the western and eastern regions of the dunefield with regard to specific drivers and the respective processes and responses. Wind is the major driver of change up to and across the crest of the dunefield. In the eastern region water (ground water, surface water and the Sand River System) is the primary agent of sediment flux through processes of aggregation and slumping as well as episodic events including debris flows. This study has highlighted a need for further quantitative studies that investigate the movement of sediment through dunefield systems such as this (where water is at or near the land surface). The paradigm that sediment flux is entirely due to wind is almost certainly simplistic, and deeper understanding of these systems is needed / Maiden name: Elkington, Lauren
85

Hurricane Storm Surge Sedimentation on the McFaddin National Wildlife Refuge, Texas: Implications for Coastal Marsh Aggradation

Hodge, Joshua B. 05 1900 (has links)
This study uses the storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in sedimentation rates on the McFaddin National Wildlife Refuge in Southeast Texas. Fourteen sediment cores were collected along a transect extending from 90 to 1230 meters inland from the Gulf Coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils, and Cesium-137 dating. The hurricane-derived sediment beds are marker horizons that facilitate assessment of marsh sedimentation rates from nearshore to inland locations as well as over decadal to annual timescales. Near the shore, on a Hurricane Ike washover fan, where hurricane-derived sedimentation has increased elevation by up to 0.68 m since 2005, there was no measurable marsh sedimentation in the period 2008-2014. Farther inland, at lower elevations, sedimentation for the period 2008-2014 averaged 0.36 cm per year. The reduction in sedimentation in the period 2008-2014 on the nearshore part of the marsh is likely due to reduced flooding in response to increased elevation from hurricane storm surge sediment deposition. These results provide valuable knowledge about the sedimentary response of coastal marshes subject to storm surge deposition and useful guidance to public policy aimed at combating the effects of sea level rise on coastal marshes along the Gulf of Mexico.
86

A radiocarbon method and multi-tracer approach to quantifying groundwater discharge to coastal waters

Gramling, Carolyn M January 2003 (has links)
Thesis (Ph. D.)--Joint Program in Marine Geology and Geophysics (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), September 2003. / Includes bibliographical references. / Groundwater discharge into estuaries and the coastal ocean is an important mechanism for the transport of dissolved chemical species to coastal waters. Because many dissolved species are present in groundwater in concentrations that are orders of magnitude higher than typical river concentrations, groundwater-borne nutrients and pollutants can have a substantial impact on the chemistry and biology of estuaries and the coastal ocean. However, direct fluxes of groundwater into the coastal ocean (submarine groundwater discharge, or SGD) can be difficult to quantify. Geochemical tracers of groundwater discharge can reflect the cumulative SGD flux from numerous small, widely dispersed, and perhaps ephemeral sources such as springs, seeps, and diffuse discharge. The natural radiocarbon content (A14C) of dissolved inorganic carbon (DIC) was developed as a tracer of fresh, terrestrially driven fluxes from confined aquifers. This A14C method was tested during five sampling periods from November 1999 to April 2002 in two small estuaries in southeastern North Carolina. In coastal North Carolina, fresh water artesian discharge is characterized by a low A14C signature acquired from the carbonate aquifer rock. Mixing models were used to evaluate the inputs from potential sources of DIC-A'4C to each estuary, including seawater, springs, fresh water stream inputs, and salt marsh respiration DIC additions. These calculations showed that artesian discharge dominated the total fresh water input to these estuaries during nearly all sampling periods. / (cont.) These new A14C-based SGD estimates were compared with groundwater flux estimates derived from radium isotopes and from radon-222. It is clear that these tracers reflect different components of the total SGD. The fluxes of low-A14C and of 222Rn were dominated by artesian discharge. Estuarine 226Ra showed strong artesian influence, but also reflected the salt water SGD processes that controlled the other three radium isotopes. The flux of 228Ra seemed to reflect seepage from the terrestrial surficial aquifer as well as salt water recirculation through estuarine sediments. The fluxes of 224Ra and 223Ra were dominated by salt water recirculation through salt marsh sediments. This multi-tracer approach provides a comprehensive assessment of the various components contributing to the total SGD. / by Carolyn M. Gramling. / Ph.D.

Page generated in 0.071 seconds