• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 21
  • 15
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Contributions of inshore and offshore sources of primary production to the foodweb, and the trophic connectivity between various habitats along a depth-gradient, in Sodwana Bay, Kwazulu-Natal, South Africa

Parkinson, Matthew Cameron January 2013 (has links)
Sodwana Bay, situated within the iSimangaliso Wetland Park, is ecologically important as it contains high-latitude corals and the most southerly known population of coelacanths. This thesis utilised stable isotope and lipid analyses to investigate the trophic ecology of the area, in particular, understanding the relative contribution of inshore and offshore primary production to consumers inhabiting intertidal and shallow subtidal, coral reef, deep reef, canyon head and pelagic habitats. Seaweeds, excluding certain species of red seaweeds with highly depleted carbon signatures, and phytoplankton, such as diatoms, were found to be the principal sources of primary production for all consumers. Offshore production was typified by dinoflagellates. Particulate organic matter (POM) was spatio-temporally variable. Three distinct productivity periods related to nutrient cycling were noted with enriched carbon signatures and higher organic matter loads associated with warmer water. Inshore primary production was an important source of carbon to consumers in all habitats with the exception of zooplankton that were more reliant on pelagic primary production. Benthic invertebrates reflected a gradient in the utilisation of inshore production, due to the reduced availability of this source further offshore. Consumers at the furthest sites offshore were found to include a substantial quantity of inshore-derived production in their diets. Fishes, which are more mobile, were found to incorporate a similar proportion of inshore production into their diets regardless of where they were collected from.
72

Ecosystem health of the Nelson Mandela Bay sandy beaches

Yani, Vuyolwethu Veronica January 2009 (has links)
An investigation of ecosystem functioning of sandy beaches in the Nelson Mandela Bay Municipality (NMBM) was carried out with the aim of describing their type and pollution status. Water salinity, temperature, pH, beach slope, water inorganic nutrient concentrations, urea, and chlorophyll-a concentration as well as the composition of zooplankton, phytoplankton, meiofauna, benthic microalgae and bacteria were examined at thirteen beaches. The beaches were classified into three types: short beaches; long beaches with surf diatoms; and long beaches that import biomass (without surf diatoms). Of the thirteen beaches, five were non-polluted and eight polluted with polluting human activities in and around them. Most beaches were dominated by fine sand except for St. Georges Strand where the particles were medium to fine sand and Maitland’s River Beach, Bluewater Bay and Sardinia Bay that had coarse sand. Nutrient concentrations ranged from 1.98 ± 0.10 μM to 19.30 ± 3.02 μM nitrate; 4.88 ± 1.00 μM to 11.97 ± 1.00 μM ammonium; 0.67 ± 0.00 μM to 2.31 ±1.00 μM soluble reactive phosphorus; and 0.00 to 0.03 ± 0.00 μg l-1 urea-N. Chlorophyll-a concentrations ranged from 0.04 ± 0.02 to 1.57 ± 0.11 μg l-1. Chlorophyll-a concentrations were negatively correlated to ammonium for all beach types (short beaches: r = 0.94; long importing beaches: r = 0.95 and surf diatom beaches: 0.94) and to nitrate for short and long importing beaches (short: r = 0.97 and long importing: r = 0.85). By contrast, a positive correlation was found between observed between chlorophyll-a concentrations and urea for surf diatom beaches (r = 0.93) and for long importing beaches (r = 0.73). Chlorophyll-a concentrations were negatively correlated to short beaches (r = 0.99) and long importing beaches (r = 0.76). The E. coli and total coliforms in all the sampled beaches were within the recommended South African water quality guidelines for contact recreation as specified by DWAF (1995) except at New Brighton Beach (2 419 total coliforms/100 ml and 1 853 E. coli cells/100 ml) and St. Georges Strand (274 total coliforms/100 ml). Diatoms dominated the phytoplankton and benthic microflora; calanoid copepods dominated the zooplankton and deposit-feeding nematodes dominated the meiofauna in all the beaches with no changes found at polluted beaches.
73

Using Geographic Information Systems for the Functional Assessment of Texas Coastal Prairie Freshwater Wetlands Around Galveston Bay

Enwright, Nicholas 05 1900 (has links)
The objective of this study was to deploy a conceptual framework developed by M. Forbes using a geographic information system (GIS) approach to assess the functionality of wetlands in the Galveston Bay Area of Texas. This study utilized geospatial datasets which included National Wetland Inventory maps (NWI), LiDAR data, National Agriculture Imagery Program (NAIP) imagery and USGS National Land Cover data to assess the capacity of wetlands to store surface water and remove pollutants, including nitrogen, phosphorus, heavy metals, and organic compounds. The use of LiDAR to characterize the hydrogeomorphic characteristics of wetlands is a key contribution of this study to the science of wetland functional assessment. LiDAR data was used to estimate volumes for the 7,370 wetlands and delineate catchments for over 4,000 wetlands, located outside the 100-yr floodplain, within a 2,075 square mile area around Galveston Bay. Results from this study suggest that coastal prairie freshwater wetlands typically have a moderate capacity to store surface water from precipitation events, remove ammonium, and retain phosphorus and heavy metals and tend to have a high capacity for removing nitrate and retainremove organic compounds. The results serve as a valuable survey instrument for increasing the understanding of coastal prairie freshwater wetlands and support a cumulative estimate of the water quality and water storage functions on a regional scale.
74

Relative sea-level rise and the development of channel-fill and shallow-water sequences on Cape Cod, Massachusetts

Gutierrez, Benjamin Thomas January 1999 (has links)
Thesis (M.S.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1999. / Includes bibliographical references (leaves 60-63). / Channel-fill sediments located in shallow-water off the south shore of Cape Cod, Massachusetts, provide a record of the late-Pleistocene and Holocene geological evolution in a post-glacial setting. Though conventionally difficult to sample adequately and anticipated to have low preservation potential, channel-fill sequences record in some detail differing relative sea-level and sedimentation processes. Two distinct channel-fill sequences record differing sequence stratigraphies, and hence different origins and post glacial histories. These sequences have accumulated in channels eroded into two different late-Pleistocene glacial units. The first fill-type was encountered in channels on the upper portions of the channel network in northern half of the study site. Channels in this portion of the channel system were incised into the late-Pleistocene glacial outwash substrate by spring sapping Uchupi and Oldale, 1994. The channel-fill sequences are comprised of a transgressive systems tract composed of a consistent sequence of coastal embayment and shoreline facies that have succeeded one another in response to Holocene relative sea-level rise. As relative sea-level flooded these paleo-channels, marsh environments were established in response to rising relative sea-level. With continued sea-level rise, the marsh environments migrated farther up channel. The exposed paleo-channels continued to flood, accommodating quiet water coastal embayments, likely protected from wave action by barrier beaches located more seaward. As relative sea-level rise continued, the coastline was driven landward over regions within the paleo-channels that formerly accommodated marsh and embayment sedimentation. The landward migration of the coastline was indicated by beach and barrier facies that covered the fine grained coastal embayment sediments. With further relative sea-level rise, beach and barrier settings were eroded as the shoreface migrated farther landward and nearshore marine deposition by wave and tidal flows ensued. Sedimentary environments similar to those recorded in the channels are found in modern coastal embayments on the south shore of Cape Cod. The second channel-fill type, which forms part of the southern and western portion of the channel network is more difficult to relate to the previously described sequence. The channels that contain fill were not adequately defined in this survey but were probably incised during the late-Pleistocene in response to ice melting and retreat. The sediments that make up this channel-fill are composed mainly of late-Pleistocene glaciolacustrine silts and clays. Sediments that make up the Holocene transgressive systems tract are limited to the upper meter of this channel sequence. They are composed of two sand units that reflect Holocene beach and nearshore sedimentation. The absence of coastal embayment and other paralic facies from the systems tract suggests that these channels did not accommodate protected embayments or that these sediments were not well preserved during the submergence of this region. Changes in the channel orientation or in the rate of relative sea-level rise may have contributed to this difference in sediment fill. / by Benjamin Thomas Gutierrez. / M.S.
75

The Causeway: Bridging Disaster Relief, Recovery, and Climate Adaptation in the Anton Ruiz Watershed

Schiavoni, Alexandra Elizabeth 10 July 2019 (has links)
The impact of natural disasters is often exacerbated by a disparity between resources for relief and recovery. When the barrio of Punta Santiago in Puerto Rico was devastated by Hurricane Maria in September of 2017, many of its residents lived in the remains of their homes for over a year while they rebuilt from wind damage and flood waters that rose over 6 feet. As climate change leads to an even more constrained timeline for response with increasingly frequent and intense storms, the future of Punta Santiago and other coastal communities worldwide will necessitate strategies ranging from nature-based shore protection systems, coastal setbacks, and managed retreat. This thesis investigates the time disparate processes of disaster relief, recovery, and climate adaptation through the lens of their impact upon the interdependent identities of people and place as informed by theorists and designers including J.B. Jackson and Patrick Geddes. My approach works from the scale of the Antón Ruíz watershed to the delta to uncover the historical and contemporary processes that knit people in the region to the land. I identify commonalities in the immediate recovery needs and long-term resiliency of the community and ecosystems, and seek to support ongoing globally significant research of the rare coastal systems surrounding Punta Santiago. The proposed design, a causeway linking the coast to the hills, dovetails disaster relief and recovery with climate adaptation by providing a persistent connection that restores and reveals the dynamic coastal landscape. / Master of Landscape Architecture / Global warming is correlated with an increase in sea level rise, atmospheric moisture (water content in the air), and surface sea temperatures. The body of research around the complex interaction of these factors is growing, but current projections are that warmer seas will cause more intense hurricanes. Coastal communities, particularly those with fewer economic resources, bear the brunt of this trend and recovery is more difficult with each passing storm. After Hurricane Maria struck in September 2017, many residents of the barrio of Punta Santiago in Puerto Rico lived in the remains of their homes for over a year with little resources to rebuild from the severe wind damage and flood waters that rose over 6 feet. Recovery is still underway almost two years later. A sustainable way forward for Punta Santiago and other coastal communities worldwide necessitates strategies ranging from natural shore stabilization techniques like mangrove buffers and living reefs to restrictions on coastal development, and even the relocation of communities. This thesis investigates the time disparate processes of disaster relief, recovery, and climate adaptation through the lens of their impact upon the interdependent identities of people and place as informed by theorists and designers including J.B. Jackson and Patrick Geddes. My approach works from the scale of the Antón Ruíz watershed to the delta to uncover the historical and contemporary land use that knit people in the region to the land. I identify commonalities in the immediate recovery needs and long-term resiliency of the community and ecosystems, and seek to support ongoing globally significant research of the rare coastal systems surrounding Punta Santiago. The proposed design, a causeway linking the coast to the hills, dovetails disaster relief and recovery with climate adaptation by providing a persistent connection that restores and reveals the dynamic coastal landscape.
76

Perceived risk versus actual risk to sea-level rise: a case study in Broward County, Florida

Unknown Date (has links)
Global climate change stressors downscale to specific local vulnerabilities, requiring customized adaptation strategies. Southeast Florida has a high likelihood of sealevel rise impact to due to the low-lying porous limestone geology. High risk is coupled with high exposure due to high-valued coastal properties, productive ecosystems, and dense populations. Coastal populations are particularly at risk due to erosion, inundation and storm surge, but interior populations are also susceptible to rising water tables and extended periods of inundation. All of these impacts are amplified by sea-level rise. Robust sea-level rise adaptation options require significant economic costs. If perceived risk does not adequately line up with actual risk, lack of funds and preparation will prevent implementation of the most effective strategies. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
77

Distribution and community structure of First Coast shark assemblages and their relative trophic niche dynamics

Morgan, Clark R 01 January 2018 (has links)
Nearshore marine environments are known to be highly productive systems with relatively high faunal diversity and abundances, but these systems are particularly vulnerable to negative impacts from anthropogenic disturbances that can result in habitat degradation. Despite these challenges, many shark species of various life stages utilize coastal shelf habitats, inshore estuaries, and bays. The inshore habitats of Cumberland and Nassau Sounds in northeast Florida have been proposed as potential nursery grounds by earlier work, but this suggestion did not satisfy all of the standard criteria of shark nursery designation. It has recently been stated that the combination of surveys inside and outside suspected nursery habitats, especially those incorporating mark-recapture studies, would provide a very comprehensive test of the nursery criteria. A primary objective of the present study was to initially describe the composition and abundance of shark populations utilizing the nearshore habitats of northeast Florida, while also comparing them to inshore communities, with emphasis on spatial and temporal variations in assemblages. Fishery-independent longline sampling was conducted across the region and while considerable overlap of species were observed, significant differences in community structure between inshore and nearshore locations were detected. Specifically, the inshore waters of the First Coast support nursery habitat designation for Atlantic sharpnose, blacktip, and sandbar sharks after satisfying the accepted criteria. Given the high amounts of spatial and temporal overlap observed along the First Coast, relative trophic niche dynamics were also investigated via stable isotope analysis of two tissue types. These results revealed varying trophic niche sizes in the long term, but suggest some degree of shared resource use when animals are present on the First Coast. The identification of factors that influence coastal shark habitat utilization, such as competition and resource use, can contribute to understanding and predicting how they may respond to future environmental changes.
78

Biogenic silica and diatom centricpennate ratios as indicators of historical coastal pollution

Spasojević, Zorana January 2002 (has links)
Historical environmental changes in two shallow, unstratified, estuaries in Buzzards Bay, Massachusetts are compared, using three diatom paleo-production indicators: sedimentary biogenic silica (BSi), BSi flux and ratio of Centric to Penate diatoms. Both estuaries were exposed to pollution. New Bedford Harbor (NBH) has a history of intensive nutrient loading and industrial pollution, while the control site, Apponagansett Bay, has lower levels of nutrient loading. Consideration of local precipitation history and diatom parameters suggests that salinity-driven changes in diatom production are negligible. Over the past ∼350 yrs, BSi concentrations and fluxes are higher in NBH. Thus, overall diatom production is sensitive to nutrient enrichment and less responsive to industrial pollutants. The relationship between the C/P ratio and environmental conditions is not as clear, possibly due to its dependence on eelgrass abundance. The uniqueness of this study lies in its use of the parameters combined, as well as its geographic setting.
79

Study and application of the Inherent Optical Properties of coastal waters from the Phaeocystis-dominated Sounthern Bight of the North Sea

Astoreca, Rosa 14 June 2007 (has links)
The Belgian Coastal Zone (BCZ) in the Southern Bight of the North Sea is a highly dynamic and optically complex area. This is due to high non-algal particles (NAP) and coloured dissolved organic matter (CDOM) content which in spring adds together with undesirable blooms of the haptophyte Phaeocystis globosa. There is a need for improving the algorithms for chlorophyll a (chl a) retrieval in these highly turbid waters and for developing algorithms for species detection in order to attempt to create an early warning bloom system. This information will contribute to the knowledge of the extent and magnitude of the P. globosa bloom in Belgian waters. In this study, pure cultures of the main taxa present in the BCZ, diatoms and P. globosa, were combined with field measurements of light absorption of total particles, phytoplankton and dissolved material, pigment determination and phytoplankton counts to address the main objectives. Sampling was performed during 8 cruises covering winter, spring, summer and late summer, and along nearshore-offshore gradients from 2003 to 2006. <p>The area is characterised by a high spatio-temporal variability of IOPs due to the high dynamics of the area in terms of currents, salinity gradients and biological production. During spring the presence of P. globosa modulates the IOPs across all the area, the particle absorption is significantly higher than summer and there is no significant coast-offshore variability for phytoplankton and CDOM. <p>The design of chl a retrieval algorithms assumes negligible absorption of NAP and CDOM in the near infrared (NIR) and the use of a fixed value of specific phytoplankton absorption. It is shown that neglecting the NAP and CDOM absorption in the NIR will have a significant overestimation impact in retrieval of chl a. On the other hand, the specific phytoplankton absorption was found to be highly variable (0.015 „b 0.011 m2 mg chl a-1). Both results will affect directly the retrieved chl a. The spatial variability of CDOM was significant varying between 0.20-1.31 m-1 in the marine area and between 1.81-4.29 m-1 in the Scheldt estuary. CDOM was found to be related to salinity with conservative mixing within the Scheldt estuary and during some seasons in the BCZ, however deviations from conservative mixing suggest other inputs to the CDOM pool. Analyses of the spectral slope of the CDOM absorption curve revealed two main CDOM pools in the area, an allochthonous one delivered by the Scheldt estuary and an autochthonous one associated with the phytoplankton spring bloom decomposition. Algorithms for CDOM retrieval will be affected if the variability in the relation between CDOM and salinity is not taken into account. <p>The optical characterisation of diatoms and P. globosa from the BCZ in pure cultures revealed that the main differences in the phytoplankton absorption spectra were found at 467 and 500 nm corresponding to the absorption of the pigments chlorophyll c3 (chl c3) characteristic of P. globosa and fucoxanthin, respectively. Accordingly, both the absorption at 467 nm and the ratio 500/467 nm were successfully used to discriminate the two taxa in cultures and field samples. This latter indicator was not preserved in the reflectance signal due to degradation of the signal when passing from absorption to reflectance, and thus could not be used for algorithm development. The spectral feature at 467 nm was later used as the basis for the development of a flag-type algorithm to detect chl c3 using either absorption or water-leaving reflectance data. Also, the correlation between the algorithm¡¦s retrieved chl c3 and P. globosa cell number allowed the quantification of the bloom. The main findings of this thesis highlight the importance of the IOPs characterisation for the improvement and development of ocean colour retrieval algorithms in these highly complex waters.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
80

GIS Modeling of Wetlands Elevation Change in Response to Projected Sea Level Rise, Trinity Bay, Texas

Lee, Erica Anne 12 1900 (has links)
This study is a test of a methodology to predict changes in elevation and shoreline position of coastal wetlands in Trinity Bay, Texas, in response to projected sea level rise. The study combines numerical modeling and a geographic information system. A smoothing technique is used on a United States Geographical Survey (USGS) digital elevation model to obtain elevation profiles that more accurately represent the gently sloping wetlands surface. The numerical model estimates the expected elevation change by raster cell based on input parameters of predicted sea level rise, mineral and organic sedimentation rates, and sediment autocompaction rates. A GIS is used to display predicted elevation changes and changes in shoreline position as a result of four projected sea level rise scenarios over the next 100 years. Results demonstrate that this numerical model and methodology are promising as a technique of modeling predicted elevation change and shoreline migration in wetlands. The approach has potential utility in coastal management applications.

Page generated in 0.082 seconds