• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 8
  • 5
  • 4
  • Tagged with
  • 97
  • 97
  • 28
  • 26
  • 22
  • 22
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Tidal turbine array modelling

Schluntz, Justine Oakley January 2014 (has links)
Computational fluid dynamics (CFD) is used in this thesis to model wind and tidal stream turbines and to investigate tidal turbine fence performance. There are two primary objectives of this work. The first is to develop and validate an actuator line method for the simulation of wind and tidal turbines which applies the blade forces to the flow field without the need for a regularisation kernel. The second is to examine tidal fences using, in part, the newly developed actuator line method. A potential flow equivalence method for determining the relative velocity to the blade chord and flow angle at the rotor blades in the actuator line method is proposed and validated. Results for simulations using this method compare favourably with those from both experiments and alternative computational methods, although the present model’s results deviate from experimental results in the vicinity of the blade tips. A CFD-embedded blade element-momentum tool is used to design rotors for operation in infinitely wide tidal fences spanning a tidal channel. Rotors are designed for fences with several different blockage ratios, with those designed for high blockage flows having greater solidity than those designed for operation in fences with lower blockage. It is found that designing rotors for operational blockage conditions can significantly improve the power output achieved by a tidal fence. Improved power output for higher blockage conditions is achieved by the application of greater thrust to the flow. Actuator line simulations of short (up to 8 turbines) fences with varying intra-rotor spacing and number of rotors confirm that hydrodynamic performance of the rotors improves as the spacing is reduced and as rotors are added to a fence. The position of a rotor within the fence impacts its performance; rotors at the ends of a fence extract reduced power compared to those at the centre of the fence, particularly for tip speed ratios greater than the design tip speed ratio.
52

Evènements météo-océaniques extrêmes / Extreme meteo-oceanic events

Mazas, Franck 17 November 2017 (has links)
Cette thèse sur travaux vise à rassembler et unifier les travaux réalisés sur le sujet des évènements météo-océaniques extrêmes depuis 2009, dans le cadre de mon travail à SOGREAH, devenu depuis ARTELIA. À mesure que progressaient ces travaux, un thème central a progressivement apparu : la notion d'évènement, tel qu'une tempête. Ce concept fournit un cadre robuste et pertinent, en particulier dans le cas des extrêmes multivariés (par exemple, la probabilité d'occurrence conjointe des vagues et des niveaux marins), ainsi qu'une meilleure compréhension de la notion de période de retour, très utilisée dans le domaine de l'ingénierie.Les principaux résultats des travaux réalisés au cours de la décennie écoulée sont les suivants :- mise à jour de la méthodologie de détermination des houles ou vents extrêmes :- développement et justification d'un cadre en deux étapes pour la modélisation sup-seuil des extrêmes univariés (méthode du renouvellement), introduisant la notion d'évènement et la séparation des seuils physique et statistique,- proposition d'outils pratiques pour le choix du seuil statistique,- introduction de la méthode du bootstrap paramétrique pour le calcul des intervalles de confiance,- identification d'un comportement problématique de l'Estimateur du Maximum de Vraisemblance et proposition d'une solution : utilisation de distributions à trois paramètres avec l'estimateur des L-moments,- application du cadre POT (Peaks-Over-Threshold) à la Méthode des Probabilités Jointes (JPM) pour la détermination des niveaux marins extrêmes :- distinction entre les valeurs séquentielles et les pics des évènements à l'aide d'indices extrémaux pour les surcotes et les niveaux marins,- construction d'un modèle mixte pour la distribution des surcotes,- raffinements pour le traitement de la dépendance marée-surcote,- application du cadre POT-JPM pour l'analyse conjointe des hauteurs de vagues et des niveaux marins :- proposition d'une procédure alternative d'échantillonnage,- analyse séparée de la marée et de la surcote dans le but de modéliser la dépendance entre la hauteur de vagues et la surcote ; avec incorporation dans la distribution conjointe de la hauteur de vagues et du niveau marin à l'aide d'une opération de convolution 2D1D,- utilisation de copules des valeurs extrêmes,- présentation améliorée du chi-plot,- introduction d'une nouvelle classification pour les analyses multivariées :- Type A : un phénomène unique décrit par différentes grandeurs physiques qui ne sont pas du même type,- Type B : un phénomène fait de différentes composantes, décrits par des grandeurs physiques du même type d'un composant à l'autre,- Type C : plusieurs phénomènes décrits par des grandeurs physiques qui ne sont pas du même type,- interprétation de la signification des évènements multivariés :- lien avec l'échantillonnage,- lien avec les différentes définitions de la période de retour,- dans le cas bivarié : transformation d'une distribution conjointe de variables descriptives de l'évènement vers la distribution des couples de variables séquentielles,- génération de graphes de srotie alternatifs tels que les contours d'iso-densité pour les couples de variables séquentielles,- un package R dédié, artextreme, pour l'implémentation des méthodes ci-dessus / This PhD on published works aims at unifying the works carried out on the topic of extreme metocean events since 2009, while working for SOGREAH then ARTELIA.As these works went along, a leading theme progressively appeared: the notion of event, such as a storm. This concept provides a sound and relevant framework in particular in the case of multivariate extremes (such as joint probabilities of waves and sea levels), as well as a better understanding of the notion of return period, much used for design in the field of engineering.The main results of the works carried out in the last decade are as follows:- updating of the methodology for determining extreme wave heights or wind speeds:- development and justification of a two-step framework for extreme univariate over-threshold modelling introducing the concept of event and the separation of the physical and statistical thresholds,- proposal of practical tools for choosing the statistical threshold,- introduction of the parametric bootstrap approach for computing confidence intervals,- identification of a problematic issue in the behaviour of the Maximum Likelihood Estimator and proposal of a solution: use of 3-parameter distributions along with the L-moments estimator,- application of the POT framework to the Joint Probability Method for determining extreme sea levels:- distinction between sequential values and event peaks through extremal indexes for surge and sea level,- construction of a mixture model for the surge distribution,- refinements for handling tide-surge dependence,- application of the POT-JPM framework for the joint analysis of wave height and sea level:- proposal of an alternative sampling procedure,- separate analysis of tide and surge in order to model the dependence between wave height and surge to be incorporated in the joint distribution of wave height and sea level thanks to a 2D1D convolution operation,- use of extreme-value copulas,- improved presentation of the chi-plot,- introduction of a new classification for multivariate analyses:- Type A: a single phenomenon described by different physical quantities that are not of the same kind,- Type B: a phenomenon made of different components, described by physical quantities of the same kind between one component and another,- Type C: several phenomena described by physical quantities that are not of the same kind,- interpretation of the meaning of multivariate events:- link with the sampling procedure,- link with the different definitions of the return period,- in the bivariate case: transformation of the joint distribution of event-describing variables into the joint distribution of sequential pairs,- generation of alternative output plots such as contours of density for sequential pairs;- a dedicated R package, artextreme, for implementing the methodologies presented above
53

Long Waves In Narrow Enclosed Basins

Tekin, Onur Baran 01 October 2012 (has links) (PDF)
In this study, numerical modeling of landslide generated tsunami waves in closed basins and their mechanisms are presented. Historical landslide generated tsunamis are investigated and also the governing parameters affecting impulse wave parameters are studied. The numerical model is based on the solution of nonlinear form of the long wave equations with respect to related initial and boundary conditions. In order to validate the outputs of the modeling by NAMIDANCE, empirical formulation is applied to the same cases as the numerical model and the results are discussed. The numerical model is then applied to Pervari Dam artificial reservoir as a case study to investigate the effects of potential landslide into the reservoir. The outputs of the numerical model are compared with empirical formulation results for different approaches of modeling the landslide effect in water body. The critical sections are observed for overtopping and maximum wave amplitude values and the results are discussed.
54

Morphological and Numerical Modeling of a Highly Dynamic Tidal Inlet at Shippagan Gully, New Brunswick

Logan, Seth J. 10 January 2012 (has links)
Shippagan Gully is a tidal inlet located near Shippagan, New Brunswick on the Gulf of Saint Lawrence. It is a particularly complex tidal inlet due to the fact that its tidal lagoon transects the Acadian peninsula and is open to the Bay des Chaleurs at its opposite end. As such, two open boundaries with phase lagged tidal cycles drive flow through the inlet, alternating direction with each tide and reaching velocities in excess of 2m/s. Hydrodynamic and morphological processes at the site are further complicated by the presence of a highly variable wave climate. Presently, shipping practices through the inlet are limited due to continual sedimentation within and immediately offshore from Shippagan Gully. As such, an extensive field study, desktop analysis and numerical and morphological modeling of Shippagan Gully have been conducted in order to provide guidance for future works. Modeling was conducted using the CMS-Wave and CMS-Flow numerical modeling system.
55

Morphological and Numerical Modeling of a Highly Dynamic Tidal Inlet at Shippagan Gully, New Brunswick

Logan, Seth J. 10 January 2012 (has links)
Shippagan Gully is a tidal inlet located near Shippagan, New Brunswick on the Gulf of Saint Lawrence. It is a particularly complex tidal inlet due to the fact that its tidal lagoon transects the Acadian peninsula and is open to the Bay des Chaleurs at its opposite end. As such, two open boundaries with phase lagged tidal cycles drive flow through the inlet, alternating direction with each tide and reaching velocities in excess of 2m/s. Hydrodynamic and morphological processes at the site are further complicated by the presence of a highly variable wave climate. Presently, shipping practices through the inlet are limited due to continual sedimentation within and immediately offshore from Shippagan Gully. As such, an extensive field study, desktop analysis and numerical and morphological modeling of Shippagan Gully have been conducted in order to provide guidance for future works. Modeling was conducted using the CMS-Wave and CMS-Flow numerical modeling system.
56

A One-line Numerical Model For Shoreline Evolution Under The Interaction Of Wind Waves And Offshore Breakwaters

Artagan, Salih Serkan 01 July 2006 (has links) (PDF)
A numerical model based on one-line theory is developed to evaluate the wind wave driven longshore sediment transport rate and shoreline change. Model performs wave transformation from deep water through the surf zone and computes the breaking parameters. The formula of longshore sediment transport rate used in the numerical model is selected as a result of comparative studies with the similar expressions and the field measurements. Offshore breakwater module of the numerical model is developed to compute the change of shoreline behind single or multiple offshore breakwaters. The validity of the numerical model was confirmed by comparing model results with the shoreline change given within the sheltered zone behind the offshore breakwaters. A series of offshore breakwaters are hypothetically proposed for a case study where a series of groins were constructed whose numerical model results qualitatively matched well with the field measurements. The results of the influences of offshore breakwaters on the shoreline predicted by the model are discussed comparatively with the case study.
57

Wind And Wind Wave Climate Research Along The Southern Part Of Black Sea

Caban, Seckin 01 July 2007 (has links) (PDF)
Winds and wind wave climate are two important phenomena for Black Sea basin. Wind wave climate has an important role on design of coastal structures and naval transportation. Despite this fact the wind wave climate is not well known for the Turkish coasts because of limited studies on this subject. The purpose of the present study was to further understand wind and wind wave climate along the Black Sea coastline of T&uuml / rkiye. For this purpose wind and wind wave data for every 65 months is obtained from ECMWF for and analyzed for 12 locations situated along Black Sea coast of Turkey. For every location the wind [Berk&uuml / n,2007] and wind wave roses, significant wind wave height vs. Mean wave period relations, extreme probability distribution and log-linear cumulative probability distribution are presented. Also a comparison with previous studies is given for better understanding the wind and wave climate better.
58

Reliability-based Design Model For Rubble-mound Coastal Defense Structures

Arikan, Gokce 01 February 2010 (has links) (PDF)
In this thesis, a new computer model (tool) for the reliability-based design of rubble-mound coastal defense structures is developed in which design is carried out in a user frienly way giving outputs on time variant reliability for the predetermined lifetimes and damage levels. The model aims to perform the following steps: 1. Determine the sources of uncertainties in design parameters 2. Evaluate the damage risk of coastal structures which are at design stage and are recently constructed. 3. Study the sensitivity of limit state functions to the design parameters. Different from other reliability studies on coastal projects, a new design computer program is developed that can be easily used by everyone working in coastal engineering field.
59

Longshore currents near Cape Hatteras, NC

Smallegan, Stephanie M. 06 April 2012 (has links)
As part of a beach erosion field experiment conducted at Cape Hatteras, NC in February 2010, this study focuses on quantifying longshore currents, which are the basic mechanism that drives longshore sediment transport. Using video imagery, the longshore currents in view of a video camera are estimated with the Optical Current Meter technique and the nearshore morphology is estimated by analyzing breaking wave patterns in standard deviation images. During a Nor‟easter storm event on February 12 and 13, 2010, the video longshore currents are compared to in situ data and it is found that the currents are most affected by the angle of incidence of incoming waves, increasing in magnitude as the angle becomes more oblique due to a larger component of radiation stress forcing in the longshore direction. The magnitude of the radiation stress forcing, which is at least an order of magnitude larger than the surface wind stress, increases as wave height increases or tide level decreases, which causes more wave breaking to occur. The normalized standard deviation images show wave breaking occurring at an inshore and offshore location, corresponding closely to the locations of an inner and outer bar indicated in survey data. Using two profiles from the survey data, one profile that intersects a trough and one that intersects a terrace, the video currents are also compared to currents simulated in one-dimension using the circulation module, SHORECIRC, and the wave module, REF/DIF-S, as part of the NearCoM system. Although the simulated currents greatly underpredict the video currents when the flow is only driven by radiation stresses, a mean water level difference between the two profiles creates a longshore pressure gradient. Superimposing a pressure gradient forcing term into the longshore momentum balance that assumes an equilibrium state of the flow, the magnitude of the simulated currents are much larger than the magnitude of the video estimated currents. Using analytical solutions of simplified forms of the mass and momentum equations to determine the effects of accelerations on the flow, it is seen that the acceleration term greatly affects the flow due to the relatively large mean water level difference that acts over a relatively short distance. Therefore, the pressure gradient forcing term is modified to include the effects of accelerations. By including the two-dimensional effects of the acceleration in the one-dimensional model through the modified pressure gradient, the quasi two-dimensional model simulated currents are very similar to the video estimated currents, indicating that the currents observed in the video may be pressure gradient driven.
60

Morphological and Numerical Modeling of a Highly Dynamic Tidal Inlet at Shippagan Gully, New Brunswick

Logan, Seth J. 10 January 2012 (has links)
Shippagan Gully is a tidal inlet located near Shippagan, New Brunswick on the Gulf of Saint Lawrence. It is a particularly complex tidal inlet due to the fact that its tidal lagoon transects the Acadian peninsula and is open to the Bay des Chaleurs at its opposite end. As such, two open boundaries with phase lagged tidal cycles drive flow through the inlet, alternating direction with each tide and reaching velocities in excess of 2m/s. Hydrodynamic and morphological processes at the site are further complicated by the presence of a highly variable wave climate. Presently, shipping practices through the inlet are limited due to continual sedimentation within and immediately offshore from Shippagan Gully. As such, an extensive field study, desktop analysis and numerical and morphological modeling of Shippagan Gully have been conducted in order to provide guidance for future works. Modeling was conducted using the CMS-Wave and CMS-Flow numerical modeling system.

Page generated in 0.1011 seconds