Spelling suggestions: "subject:"codigos dde hoppa"" "subject:"codigos dde goppa""
1 |
[en] AN ALGEBRAIC CONSTRUCTION OF GEOMETRIC CODES / [pt] UMA CONSTRUÇÃO ALGÉBRICA DE CÓDIGOS GEOMÉTRICOSLHAYLLA DOS SANTOS CRISSAFF 20 September 2005 (has links)
[pt] Começamos estudando uma classe particular de códigos lineares, os chamados
códigos de Goppa que são obtidos calculando o valor de certas funções
em pontos de Kn, onde K é um corpo finito. Apresentamos uma generalização
desta construção e definimos códigos de avaliação sobre K- ágebras
satisfazendo certas propriedades. Para estes códigos, descrevemos um algoritmo
de decodificação e mostramos que se considerarmos os códigos de
Goppa em um ponto como exemplo desta nova construção, o algoritmo
corrige mais erros do que o algoritmo clássico para os códigos de Goppa. / [en] We begin studying a certain type of linear code the so-called Goppa codes.
These codes are constructed by taking the evaluation of certain functions
at points in Kn, where K is a finite field. As a generalization of this
construction, we introduce the so-called evaluation codes defined over K-algebras
satisfying some properties. For these codes, we describe a decoding
algorithm and we show that if we consider classical one-point Goppa codes
as an example of the new construction, this algorithm correct more errors
that the classical algorithm for Goppa codes.
|
2 |
Codificação de certos codigos de Goppa geometricos utilizando a teoria de Bases de Grobner e codigos sobre a curva Norma-Traço / Encoding geometric Goppa codes via Grobner basis and codes on Norm-Trace curvesTizziotti, Guilherme Chaud 06 March 2008 (has links)
Orientador: Fernando Eduardo Torres Orihuela / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T03:53:44Z (GMT). No. of bitstreams: 1
Tizziotti_GuilhermeChaud_D.pdf: 891044 bytes, checksum: 4e90b377185548b051c39ead60bdf183 (MD5)
Previous issue date: 2008 / Resumo: Estendemos resultados de Heegard, Little e Saints relacionados a bases de Gröbner para códigos Hermitianos pontuais. Trabalhamos com códigos Hermitianos bipontuais e n-pontuais, e com códigos sobre a curva Norma-Traço. Além disso, determinamos o semigrupo de Weierstrass de um certo par de pontos racionais sobre a curva Norma-Traço e com esse semigrupo conseguimos melhorar a cota da distância mínima de códigos construídos sobre tais curvas / Abstract: We extend results of Heegard, Little and Saints concerning the Gröbner basis algorithm for one-point Hermitian codes. We work with two-point and n-point Hermitian codes and codes arising from the Norm-Trace curve. We also determine the Weierstrass semigroup at a certain pair of rational points in such curves and uses these computations to improve the lower bound on the minimum distance of two-point algebraic geometry codes arising from them / Doutorado / Algebra, Geometria Algebrica / Doutor em Matemática
|
3 |
Sobre codigos hermitianos generalizados / On generalized hermitian codesSepúlveda Castellanos, Alonso 21 February 2008 (has links)
Orientador: Fernando Eduardo Torres Orihuela / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T07:01:07Z (GMT). No. of bitstreams: 1
SepulvedaCastellanos_Alonso_D.pdf: 783003 bytes, checksum: 2af4bba938cd5b7d31fcd02a5c79ac85 (MD5)
Previous issue date: 2008 / Resumo: Estudamos os códigos de Goppa (códigos GH) sobre certos corpos de funções algébricas com muitos lugares racionais. Estes códigos generalizam os bem conhecidos códigos Hermitianos; portanto podemos esperar que estes códigos tenham bons parâmetros. Bulygin (IEEE Trans. Inform. Theory 52 (10), 4664¿4669 (2006)) inicia o estudo dos códigos GH; enquanto Bulygin considerou somente característica par, nosso trabalho 'e feito em qualquer característica. Em qualquer caso, nosso trabalho é fortemente influenciado pelo de Bulygin. A seguir, listamos alguns dos nossos resultados com respeito aos códigos GH. ¿ Calculamos ¿distâncias mínimas exatas¿, em particular, melhoramos os resultados de Bulygin; ¿ Encontramos cotas para os pesos generalizados de Hamming, al'em disso, mostramos um algoritmo para aplicar estes cálculos na criptografia; ¿ Calculamos um subgrupo de Automorfismos; ¿ Consideramos códigos em determinados subcorpos dos corpos usados para construir os códigos GH / Abstract: We study Goppa codes (GH codes) based on certain algebraic function fields whose number of rational places is large. These codes generalize the well-known Hermitian codes; thus we might expect that they have good parameters. Bulygin (IEEE Trans. Inform. Theory 52 (10), 4664¿4669 (2006)) initiate the study of GH-codes; while he considered only the even characteristic, our work is done regardless the characteristic. In any case our work was strongly influenced by Bulygin¿s. Next we list some of the results of our work with respect to GH-codes. ¿ We calculate ¿true minimum distances¿, in particular, we improve Bulygin¿s results; ¿ We find bounds on the generalized Hamming weights, moreover, we show an algorithm to apply these computations to the cryptography; ¿ We calculate an Automorphism subgroup; ¿ We consider codes on certain subfields of the fields used for to construct GH-codes / Doutorado / Algebra (Geometria Algebrica) / Doutor em Matemática
|
Page generated in 0.0577 seconds