• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantifying Coding Gain from Telemetry Data Combining

Forman, Michael A., Condreva, Ken, Kirchner, Gary, Lam, Kevin 10 1900 (has links)
ITC/USA 2008 Conference Proceedings / The Forty-Fourth Annual International Telemetering Conference and Technical Exhibition / October 27-30, 2008 / Town and Country Resort & Convention Center, San Diego, California / A method for combining telemetry data and quantifying the resulting coding gain for a ballistic missile test flight is presented. Data received from five ground stations in 54 data files with 18 million intermittent frames is combined, to create a single file with 1.5 million continuous frames. Coding gain provided by data combining is as high as 30 dB, with a useful improvement of 5 dB at boost and terminal stages. With frame reconstruction techniques, erroneous words in a frame are reduced from 2.1% to 0.12 %.
2

Improved subband-based and normal-mesh-based image coding

Xu, Di 19 December 2007 (has links)
Image coding is studied, with the work consisting of two distinct parts. Each part focuses on different coding paradigm. The first part of the research examines subband coding of images. An optimization-based method for the design of high-performance separable filter banks for image coding is proposed. This method yields linear-phase perfect-reconstruction systems with high coding gain, good frequency selectivity, and certain prescribed vanishing-moment properties. Several filter banks designed with the proposed method are presented and shown to work extremely well for image coding, outperforming the well-known 9/7 filter bank (from the JPEG-2000 standard) in most cases. Several families of perfect reconstruction filter banks exist, where the filter banks in each family have some common structural properties. New filter banks in each family are designed with the proposed method. Experimental results show that these new filter banks outperform previously known filter banks from the same family. The second part of the research explores normal meshes as a tool for image coding, with a particular interest in the normal-mesh-based image coder of Jansen, Baraniuk, and Lavu. Three modifications to this coder are proposed, namely, the use of a data-dependent base mesh, an alternative representation for normal/vertical offsets, and a different scan-conversion scheme based on bicubic interpolation. Experimental results show that our proposed changes lead to improved coding performance in terms of both objective and subjective image quality measures.
3

Etude et Amélioration de Turbo-Codage Distribué pour les Réseaux Coopératifs

Ben Chikha, Haithem 10 April 2012 (has links)
Dans les systèmes radio mobiles, la diversité représente une technique efficace pour lutter contre l’évanouissement dû aux multi-trajets. La pleine diversité spatiale est atteinte dans les systèmes multiple-input multiple-output (MIMO). Mais, souvent l’intégration d’antennes multiples au niveau de l’émetteur ou du récepteur est coûteuse. Comme alternative, dans les réseaux sans fil multi-hop, la diversité coopérative garantit des gains de diversité spatiale en exploitant les techniques MIMO traditionnelles sans avoir besoin d’antennes multiples. En outre, la diversité coopérative fournit au réseau : un débit important, une énergie réduite et une couverture d’accès améliorée.Dans ce contexte, l’objectif de cette thèse est de concevoir des schémas de codage pour le canal à relais afin de réaliser une meilleure performance en termes de gain de diversité et de gain de codage. D’abord, nous étudions un système de turbo-codage distribué à L-relais en mode soft-decode-and-forward. Ensuite, nous proposons un système de turbocodage coopératif distribué à L-relais en utilisant la concaténation en parallèle des codes convolutifs. Enfin, afin d’améliorer la fiabilité de détection au niveau du noeud relais, nous proposons la technique de sélection d’antenne/relayage-soft. Pour une modulation BPSK, nous dérivons des expressions de la borne supérieure de la probabilité d’erreurbinaire où les différents sous-canaux sont supposés à évanouissement de Rayleigh, indépendants et pleinement entrelacés avec une information instantanée d’état de canal idéal. Une validation des résultats théoriques est également menée par la simulation. / Diversity provides an efficient method for combating multipath fading in mobile radio systems. One of the most common forms of spatial diversity is multiple-input multipleoutput (MIMO), where full diversity is obtained. However, embedding multiple antennas at the transmitter or the receiver can sometimes be expensive. As an alternative to collocated antennas, cooperative diversity in wireless multi-hop networks confirms their ability to achieve spatial diversity gains by exploiting the spatial diversity of the traditional MIMO techniques, without each node necessarily having multiple antennas. In addition, cooperative diversity has been shown to provide the network with importantthroughput, reduced energy requirements and improved access coverage.In light of this, the objective of this thesis is to devise coding schemes suitable for relay channels that aim at showing the best compromise between performance of diversity and coding gains. Firstly, we investigate a distributed turbo coding scheme dedicated to L-relay channels operating in the soft-decode-and-forward mode. Then, we present a proposed distributed turbo coded cooperative (DTCC) scheme, called parallel concatenated convolutional-based distributed coded cooperation. Finally, we investigate antenna/soft-relaying selection for DTCC networks in order to improve their end-to-end performance. Assuming BPSK transmission for fully interleaved channels with ideal channel state information, we define the explicit upper bounds for error probability inRayleigh fading channels with independent fading. Both theoretical limits and simulation results are presented to demonstrate the performances.
4

Scalable video compression with optimized visual performance and random accessibility

Leung, Raymond, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2006 (has links)
This thesis is concerned with maximizing the coding efficiency, random accessibility and visual performance of scalable compressed video. The unifying theme behind this work is the use of finely embedded localized coding structures, which govern the extent to which these goals may be jointly achieved. The first part focuses on scalable volumetric image compression. We investigate 3D transform and coding techniques which exploit inter-slice statistical redundancies without compromising slice accessibility. Our study shows that the motion-compensated temporal discrete wavelet transform (MC-TDWT) practically achieves an upper bound to the compression efficiency of slice transforms. From a video coding perspective, we find that most of the coding gain is attributed to offsetting the learning penalty in adaptive arithmetic coding through 3D code-block extension, rather than inter-frame context modelling. The second aspect of this thesis examines random accessibility. Accessibility refers to the ease with which a region of interest is accessed (subband samples needed for reconstruction are retrieved) from a compressed video bitstream, subject to spatiotemporal code-block constraints. We investigate the fundamental implications of motion compensation for random access efficiency and the compression performance of scalable interactive video. We demonstrate that inclusion of motion compensation operators within the lifting steps of a temporal subband transform incurs a random access penalty which depends on the characteristics of the motion field. The final aspect of this thesis aims to minimize the perceptual impact of visible distortion in scalable reconstructed video. We present a visual optimization strategy based on distortion scaling which raises the distortion-length slope of perceptually significant samples. This alters the codestream embedding order during post-compression rate-distortion optimization, thus allowing visually sensitive sites to be encoded with higher fidelity at a given bit-rate. For visual sensitivity analysis, we propose a contrast perception model that incorporates an adaptive masking slope. This versatile feature provides a context which models perceptual significance. It enables scene structures that otherwise suffer significant degradation to be preserved at lower bit-rates. The novelty in our approach derives from a set of "perceptual mappings" which account for quantization noise shaping effects induced by motion-compensated temporal synthesis. The proposed technique reduces wavelet compression artefacts and improves the perceptual quality of video.
5

Space-Time Block Coding to Achieve Spatial Diversity in a Multiple Input Multiple Output System.

Ganji, Saichand January 2018 (has links)
No description available.

Page generated in 0.0662 seconds