• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanistic Characterization of Cyclic Pyranopterin Monophosphate Formation in Molybdenum Cofactor Biosynthesis

Hover, Bradley Morgan January 2014 (has links)
<p>The molybdenum cofactor (Moco) is an essential enzyme cofactor found in all kingdoms of life. Moco plays central roles in many vital biological processes, and must be biosynthesized de novo. During its biosynthesis, the characteristic pyranopterin ring of Moco is constructed by a complex rearrangement of guanosine 5'-­triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC. However, the mechanisms and the functions of the two enzymes are under significant debate. To elucidate their physiological roles, I took a multidisciplinary approach to functionally characterize MoaA and MoaC in vivo and in vitro. In this dissertation, I report the first isolation and characterization of the physiological MoaC substrate, 3',8-­ cyclo-­7,8-­dihydro-­guanosine 5'-triphosphate (3',8-cH2GTP). I also report the first X-­ray crystal structures of MoaC in complex with this highly air sensitive substrate, and its product cPMP. These studies, combined with in vitro experiments using substrate analogs, catalytically impaired mutants, and synthetic peptides, have enabled me to delineate the functions of the Moco biosynthetic enzymes, MoaA and MoaC, and proposed mechanistic models for their roles in the formation of cPMP.</p> / Dissertation
2

Caractérisation de nouvelles enzymes impliquées dans la biosynthèse de cofacteurs de microorganismes. Mécanismes des tyrosine lyases à radical SAM / Characterization of novel enzymes involved in biosynthesis of microbial cofactors. Mechanisms of radical SAM tyrosine lyases

Decamps, Laure 13 January 2014 (has links)
Le cofacteur F420 est un coenzyme d’oxydoréduction essentiel pour la méthanogenèse chez les archées, un processus qui influence fortement les interactions métaboliques au sein du microbiote intestinal ; en outre, il joue un rôle important dans la pathogénicité de la bactérie Mycobacterium tuberculosis. L’étude de sa biosynthèse présente donc un intérêt majeur en Biologie.La formation du chromophore du F420 est catalysée par la F0-synthase, qui contient, de façon unique, deux domaines caractéristiques des enzymes à radical SAM (rSAM). Ces enzymes catalysent le clivage de la S-adénosylméthionine (SAM) pour former un radical 5′ déoxyadénosyle, capable d’initier un grand nombre de réactions radicalaires.Nous avons réussi à identifier les substrats de la F0-synthase et à reconstituer la synthèse du F0 in vitro. Nous avons également démontré que cette enzyme contient deux centre [4Fe-4S] 2+/1+ rSAM fonctionnels et caractérisé les étapes de la synthèse du F0. Ceci nous a permis de proposer un mécanisme réactionnel pour la F0 synthase. Nous avons ensuite entrepris la comparaison de la F0 synthase avec les deux autres enzymes rSAM tyrosine lyases connues à ce jour : ThiH, impliquée dans la biosynthèse de la vitamine B1, et HydG, impliquée dans la biosynthèse du cofacteur métallique de l’hydrogénase à fer-fer. Nous avons ainsi découvert de nouveaux aspects de la réaction de clivage de la tyrosine par ces enzymes, permettant une meilleure compréhension de ce groupe émergent au sein de la superfamille des enzymes rSAM. / Cofactor F420 is a redox coenzyme crucial for methanogenesis in Archaea, a process which plays a major role in metabolic interactions in the gut microbiota ; It also constitutes a key pathogenicity factor for Mycobacterium tuberculosis. Understanding the biosynthesis of this cofactor is thus of major interest.The biosynthesis of the chromophore of F420 is catalyzed by F0 synthase, which comprises, in a unique manner, two radical SAM (rSAM) domains. These enzymes catalyze the cleavage of S adenosylmethionine (SAM) to produce a 5′-deoxyadenosyl radical, which can initiate a broad range of radical reactions.We succeeded to identify the substrates of F0-synthase and to perform the biosynthesis of F0 in vitro. We ascertained that F0-synthase contains two functional [4Fe-4S]2+/1+ rSAM clusters, and characterized the steps of the reaction of F0 synthesis. Based on these date, we proposed a mechanism for the F0-synthase reaction. Furthermore, we compared F0 synthase with the two other radical SAM tyrosine lyases identified to date: ThiH, which is involved in vitamin B1 biosynthesis, and HydG, which is involved in the biosynthesis of the metal cofactor of iron-iron hydrogenases. We obtained novel insights of the reaction of tyrosine cleavage catalyzed by these enzymes, providing a better understanding of this emerging group in the rSAM enzyme superfamily.
3

Structural Studies On Bovine Pancreatic Phospholipase A2 And Proteins Involved In Molybdenum Cofactor Biosynthesis

Kanaujia, Shankar Prasad 10 1900 (has links) (PDF)
We have carried out structural studies on bovine pancreatic phospholipase A2 (BPLA2) and two proteins involved in molybdenum cofactor (Moco) biosynthesis pathway. In addition, molecular-dynamics simulations and other analyses have been performed to corroborate the findings obtained from the crystal structures. Crystal structures of the three active-site mutants (H48N, D49N and D49K) of BPLA2 were determined to understand the mechanism by which the mutant H48N is able to catalyze the reaction of phospholipid hydrolysis and to see the effect of the loss of Ca 2+ ion in the active site of D49N and D49K mutants. We found that Asp49 could possibly play the role of a general base instead of His48 in the case of the H48N mutant. In the case of D49N and D49K mutants, the active site of the enzyme is perturbed, whereas the overall tertiary structure of these mutants is intact. In addition, a total of 24 invariant water molecules were identified in all of the crystal structures of BPLA2 available in its archive, PDB. Out of these, four water molecules are essential for the catalytic activity, whereas, the remaining water molecules play a role in the stability of the enzyme. In addition, structural studies on two proteins MoaC and MogA involved in Moco biosynthesis pathway have been carried out. For the first time, crystal structure of MoaC bound with GTP molecule has been reported. The gene id TTHA0341, which is mentioned as MoaB in the CMR database, was annotated as MogA based the comparative analysis of sequences and structures (with the present work and the structures available in the literature). The role of N-and C-termini of MoaB and MogA proteins were proposed that these residues might stabilize the substrate and/or product molecule in the active site. In addition, the residues involved in the oligomerization are compared with MD simulations. The molecular docking studies show that MoaB proteins show more preference to GTP than ATP. The comparison of the two active (MPT and AMP-binding) sites revealed that MPT-binding site is preferred over AMP-binding site for nucleotide binding.

Page generated in 0.0639 seconds