• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Step into Structural Biology: Structural Determination of TNK1-UBA and Computational Design of a Radical SAM Cyclase

Tseng, Yi-Jie 10 August 2023 (has links) (PDF)
Structural biology uncovers life's secrets by studying protein structures via techniques like X-ray crystallography. This knowledge drives advancements in protein engineering for the improvement of human lives. Yet, obtaining high-quality crystals in X-ray crystallography is challenging. To overcome this, we used Translocation ETS Leukemia protein Sterile Alpha Motif domain (TELSAM), a promising polymer-forming crystallization chaperone (PFCC), to enhance protein crystallization. Human thirty-eight-negative kinase-1 (TNK1), a key player in cancer progression, possess a ubiquitin association (UBA) domain that binds polyubiquitin and regulates TNK1 activity and stability. Although sequence analysis hints at an unconventional TNK1 UBA domain architecture, its molecular structure lacks experimental validation. To gain insight into TNK1 regulation, we fused the UBA domain to the 1TEL crystallization chaperone and obtained crystals diffracting as far as 1.53 Ã…. 1TEL enabled solution of the X-ray phases. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its 1TEL polymer and to crystallize at protein concentrations as low as 0.1 mg/mL. Our findings support a TELSAM fusion crystallization mechanism, highlighting fewer crystal contacts compared to traditional crystals. Both modeling and experimental validation indicate that the UBA domain exhibits selectivity towards polyubiquitin chain length and linkages. Radical S-adenosylmethionine (SAM) enzymes catalyze various radical-mediated substrate transformations. Despite the growing interest of computational enzyme design in industrial small molecule synthesis, radical SAM enzymes remain relatively unexplored. We used PyRosetta to leverage hydrogen bonding design (hbDes) and hydrophobic interaction design (hpDes) to enable a radical cyclization reaction on our selected substrate. Although the purified enzymes demonstrated activation potential with a reducing agent, enzymatic assays failed to exhibit activity against the reactant. To obtain successful results, addressing additional questions and issues is required, which may involve the implementation of machine learning.
2

Synthetic approaches to investigate the chemical mechanism in the biosynthesis of natural products

Choi, Sei Hyun 22 September 2014 (has links)
The study of the biosynthetic logic of natural products has established itself to be one of the more exciting areas of research and have become an important part of modern drug discovery and development efforts. Therefore, understanding the pathway and the chemical mechanism of the biosynthesis of natural products is important in that knowledge on these processes can be applied for combinatorial biosynthesis to generate new natural product derivatives with enhanced biological activities. In addition to the practical value, a lot of unprecedented chemical mechanisms can be found in the enzymes involved therein, which will significantly advance our understanding of enzyme catalysis. The works described in this dissertation focus on elucidating the chemical mechanism of a number of enzymes involved in natural product biosynthesis by utilizing the versatility of synthetic chemistry to prepare enzyme substrates and mechanistic probes. First, SpnF and SpnL responsible for constructing the tetracyclic architecture of spinosyn A have been investigated. In vitro assay revealed the importance of the highly conjugated system for the [4+2]cycloaddition catalyzed by SpnF. Biochemical studies strongly suggest that SpnL employs the Rauhut-Currier mechanism for the second cyclization step in the biosynthesis of spinosyn A. It was also demonstrated that SpnL requires SAM for its activity. Second, a radical SAM enzyme DesII involved in the desosamine pathway has been investigated. It has been demonstrated that DesII can catalyze the dehydrogenation of TDP-D-quinovose as well as the deamination of the natural substrate, which makes DesII unique among radical SAM enzymes. In vitro assays revealed that DesII requires stoichiometric amount of SAM, which. EPR study firmly established the intermediacy of a C-3 radical in the DesII-catalyzed dehydrogenation of TDP-D-quinovose. Finally, the chemical mechanism of AXS responsible for the biosynthesis of UDP-apiose has been investigated. In vitro activity assay using UDP-2F-glucuronic acid showed that the analog is a competitive inhibitor of AXS. A coupled assay strategy was also developed to investigate the chemical mechanism of AXS in the reverse direction. In addition, the stereospecificity of two separate hydride transfer steps of AXS reaction has been firmly established. / text
3

Caractérisation de nouvelles enzymes impliquées dans la biosynthèse de cofacteurs de microorganismes. Mécanismes des tyrosine lyases à radical SAM / Characterization of novel enzymes involved in biosynthesis of microbial cofactors. Mechanisms of radical SAM tyrosine lyases

Decamps, Laure 13 January 2014 (has links)
Le cofacteur F420 est un coenzyme d’oxydoréduction essentiel pour la méthanogenèse chez les archées, un processus qui influence fortement les interactions métaboliques au sein du microbiote intestinal ; en outre, il joue un rôle important dans la pathogénicité de la bactérie Mycobacterium tuberculosis. L’étude de sa biosynthèse présente donc un intérêt majeur en Biologie.La formation du chromophore du F420 est catalysée par la F0-synthase, qui contient, de façon unique, deux domaines caractéristiques des enzymes à radical SAM (rSAM). Ces enzymes catalysent le clivage de la S-adénosylméthionine (SAM) pour former un radical 5′ déoxyadénosyle, capable d’initier un grand nombre de réactions radicalaires.Nous avons réussi à identifier les substrats de la F0-synthase et à reconstituer la synthèse du F0 in vitro. Nous avons également démontré que cette enzyme contient deux centre [4Fe-4S] 2+/1+ rSAM fonctionnels et caractérisé les étapes de la synthèse du F0. Ceci nous a permis de proposer un mécanisme réactionnel pour la F0 synthase. Nous avons ensuite entrepris la comparaison de la F0 synthase avec les deux autres enzymes rSAM tyrosine lyases connues à ce jour : ThiH, impliquée dans la biosynthèse de la vitamine B1, et HydG, impliquée dans la biosynthèse du cofacteur métallique de l’hydrogénase à fer-fer. Nous avons ainsi découvert de nouveaux aspects de la réaction de clivage de la tyrosine par ces enzymes, permettant une meilleure compréhension de ce groupe émergent au sein de la superfamille des enzymes rSAM. / Cofactor F420 is a redox coenzyme crucial for methanogenesis in Archaea, a process which plays a major role in metabolic interactions in the gut microbiota ; It also constitutes a key pathogenicity factor for Mycobacterium tuberculosis. Understanding the biosynthesis of this cofactor is thus of major interest.The biosynthesis of the chromophore of F420 is catalyzed by F0 synthase, which comprises, in a unique manner, two radical SAM (rSAM) domains. These enzymes catalyze the cleavage of S adenosylmethionine (SAM) to produce a 5′-deoxyadenosyl radical, which can initiate a broad range of radical reactions.We succeeded to identify the substrates of F0-synthase and to perform the biosynthesis of F0 in vitro. We ascertained that F0-synthase contains two functional [4Fe-4S]2+/1+ rSAM clusters, and characterized the steps of the reaction of F0 synthesis. Based on these date, we proposed a mechanism for the F0-synthase reaction. Furthermore, we compared F0 synthase with the two other radical SAM tyrosine lyases identified to date: ThiH, which is involved in vitamin B1 biosynthesis, and HydG, which is involved in the biosynthesis of the metal cofactor of iron-iron hydrogenases. We obtained novel insights of the reaction of tyrosine cleavage catalyzed by these enzymes, providing a better understanding of this emerging group in the rSAM enzyme superfamily.
4

Les bactériocines RumC, une nouvelle famille de peptides antimicrobiens comme alternative aux antibiotiques conventionnels / RumC peptides, a new family of bacteriocins as viable alternative to conventional antibiotics

Chiumento, Steve 11 October 2019 (has links)
Les antibiotiques sont des médicaments qui ont changé notre manière d’aborder les infections bactériennes et sont devenus l’un des symboles de la médecine moderne. Cependant leur utilisation massive a conduit à l'émergence de souches bactériennes multirésistantes. Ce problème est sans aucun doute un des grands défis que la médecine actuelle doit relever. Sachant que les bactéries évoluent à un rythme plus rapide que la production de nouveaux antibiotiques, il est urgent de trouver des approches alternatives. Il a été mis en évidence que ces mêmes bactéries sont capables de sécréter différents peptides antimicrobiens, ou bactériocines. Ces macromolécules présentent une grande diversité structurale et sont très efficaces pour combattre un grand nombre de souches pathogènes de façon spécifique. Les bactériocines ont un immense potentiel dans les domaines agroalimentaire et pharmaceutique. Notre projet s’intéresse aux bactériocines RumCs produites par une souche dérivée de Ruminococcus gnavus, une bactérie anaérobie stricte, membre dominant du microbiote intestinal humain. Le travail présenté dans ce manuscrit concerne la mise au point d’un système d’expression et de maturation hétérologue chez E. coli de la bactériocine RumC1. La caractérisation biochimique du peptide RumC1 montre que les bactériocines RumCs appartiennent à la famille des sactipeptides pour laquelle l’étape de biosynthèse fait intervenir une enzyme radical-SAM. Les sactipeptides présentent dans leurs séquences peptidiques un ou plusieurs ponts thioéther entre une cystéine et le carbone alpha d’un acide aminé partenaire. RumC1 renferme 4 ponts thioéther ce qui lui confère une structure originale en double épingle à cheveux. L’activité biologique de RumC1 montre que ce peptide est efficace contre un large spectre de bactéries à Gram positif incluant des pathogènes résistants tels que S.aureus et E. faecalis. Dans ces études nous n’avons pas noté de toxicité significative de RumC1 sur différentes lignées cellulaires humaine ni observé de phénomène de résistance. Les travaux en cours visent notamment à définir le mode d’action de RumC1 et à évaluer l’activité biologique de RumC1 dans un contexte d’infection in vivo chez la souris. / Antibiotics are drugs that have changed the way we approach bacterial infections and have become one of the symbols of modern medicine. However, their widespread use has led to the emergence of multiresistant bacterial strains. This problem is undoubtedly one of the major challenges facing today's medicine. Knowing that bacteria evolve at a faster rate than the discovery of new antibiotics, it is urgent to find alternative approaches. It has been shown that these same bacteria are capable of secreting antimicrobial peptides, the bacteriocins. These macromolecules have a high structural diversity and are very effective in combating a large number of pathogenic strains in a specific way. Bacteriocins have immense potential in the agro-food and pharmaceutical sectors. Our project focuses on the bacteriocins RumCs produced by a strain derived from Ruminococcus gnavus, a strict anaerobic bacterium of the human intestinal microbiota. The work presented in this manuscript concerns the development of a heterologous expression and maturation system in E. coli of the bacteriocin RumC1. The biochemical characterization of the RumC1 peptide shows that the RumCs bacteriocins belong to the family of sactipeptides for which the biosynthesis step involves a radical-SAM enzyme. The sactipeptides have in their peptide sequences one or more thioether bridges between a cysteine and the alpha carbon of a partner amino acid. RumC1 contains 4 thioether bridges which gives it an original structure in double hairpin. The biological activity of RumC1 shows that this peptide is effective against a broad spectrum of Gram-positive bacteria including resistant pathogens such as S.aureus and E. faecalis. In these studies, we did not note any significant toxicity of RumC1 on different human cell lines nor observed resistance phenomena. Current work aims to define the mode of action of RumC1 and to evaluate the biological activity of RumC1 in an in vivo context of infection in mice.

Page generated in 0.0665 seconds