• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 8
  • 8
  • 3
  • 2
  • Tagged with
  • 83
  • 83
  • 35
  • 19
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulação da dispersão de poluentes na camada limite planetária : um modelo determinístico-estocástico

Gisch, Debora Lidia January 2018 (has links)
Questões ambientais estão no centro das discussões nas últimas décadas. A poluição atmosférica, causada pela expansão pós-revolução industrial fez surgir a necessidade de aprender a descrever, usando modelos matemáticos, esse fenômeno. Com esse conhecimento pode-se propor soluções que mitiguem a poluição e os danos colaterais causados ao ambiente. A dispersão de poluentes modelada por soluções analíticas, a partir das equações de advecção-difusão oferecem um conhecimento sobre cada componente que constrói a equação, característica inexistente em outras abordagens, como a numérica. Entretanto ela era incapaz de descrever propriedades que se referem à turbulência, as estruturas coerentes, causadas por componentes não-lineares suprimidas por construção das equações governantes do modelo. Este trabalho estudou uma forma de recuperar características associadas à turbulência através de uma componente fundamental em estruturas coerentes, a fase. Essa é incluída no modelo que passa a descrever manifestações da turbulência em processos de dispersão através de flutuações de pequena escala na concentração da solução do modelo sesquilinear, que é determinístico-estocástico. No decorrer do trabalho há um estudo através de variações de parâmetros para compreender os efeitos da fase no modelo. Ele também foi aplicado ao experimento de Copenhagen e a dois cenários reais com a intenção de compreender o modelo frente à variáveis micrometeorológicas assim como aprimorá-lo para simular a dispersão de poluentes oriundos de fontes de forma realística. / Environmental issues have been at the center of discussions in the last few decades. Atmospheric pollution, caused by post-industrial revolution, has increased the necessity to describe, using mathematical models, this phenomenon. With this knowledge is possible to propose solutions mitigating the pollution and collateral damages caused in the environment. The pollutant dispersion modeled by analytical solutions, from advection-diffusion equations, offers a knowledge about each component that constructs the equation, a characteristic that does not exist in other approaches, such as numerical. However it was unable to describe properties that refer to turbulence, coherent structures, caused by nonlinear components suppressed by constructing the model governing equations. This work studied a way to recover characteristics associated with turbulence through a fundamental component in coherent structures, the phase. This is included in the model which describes manifestations of turbulence in the dispersion process through the presence of small-scale concentration fluctuations in the sesquilinear model, which is deterministicstochastic. In the course of this work there is a study through variations of parameters to understand the phase effects in the model. It was also applied to Copenhagen experiment and to two real scenarios with the intention of understanding the model regarding micrometeorological variables as well as improving it to simulate the pollutant dispersion from sources in a realistic way.
12

Temporal Numerical Simulations of Turbulent Coanda Wall Jets

Valsecchi, Pietro January 2006 (has links)
In a novel application of the temporal numerical simulation, an investigation ofturbulence modeling techniques is carried for the turbulent wall jet over aconvex surface (Coanda wall jet.) The simultaneous presence of multipleinstability mechanisms and the interaction with the turbulence dynamics at thesolid boundary produces a unique combination of different large turbulentcoherent structures that constitutes both a consistent challenge for numericalsimulations and an ideal test bed for turbulence models.The Temporal Direct Numerical Simulation (TDNS) of the Coanda wall jetrestricts the focus from the global turbulent Coanda wall jet to a smaller, localportion of the flow and offers a wide array of advantages to the present work. Inparticular, the size of the computational domain can be arbitrarily chosen inboth the spanwise and the streamwise directions. This allows to either suppressor enhance individual physical mechanisms and, consequently, to selectivelyreproduce different large coherent structures within the local flow. In the firstpart, temporal numerical simulations are employed to reproduce four differentflow scenarios of the local Coanda wall jet with a level of numerical resolutionthat, because of the reduced size of the computational domain, cannot be matchedby standard DNS of the entire physical flow (spatial DNS, or SDNS.)The TDNS of these four flow scenarios are then used in the second part for ana--posteriori analysis of different turbulence models in order to addresscommon shortcomings shown by Hybrid Turbulence Models (HTM). For each flowscenario, the turbulent flow field is deliberately decomposed in resolved andunresolved flows by the application of different filters in space correspondingto different grid resolution. The behavior of turbulence models can be reproducedfrom the resolved flow and compared to the turbulent stress tensor directlycalculated from the unresolved part of the flow field. Starting from the RANSlimit, turbulence models with different levels of complexity are studied.Successively, the performance of these models is analyzed at intermediatenumerical resolutions between RANS, LES, and DNS. Finally, an improvedformulation of the Flow Simulation Methodology (FSM) is proposed.
13

SIZE, DYNAMICS AND CONSEQUENCES OF LARGE-SCALE HORIZONTAL COHERENT STRUCTURES IN OPEN-CHANNEL FLOWS: AN EXPERIMENTAL STUDY

Ahmari, Habib 20 September 2013 (has links)
This thesis concerns the occurrence of the large-scale bed and plan forms known as alternate bars and meandering, and the internal structures of the flow associated with their formation. The work is to be viewed as an extension of previous work by da Silva (1991), Yalin (1992), and Yalin and da Silva (2001). As a first step in this work, the criteria for occurrence of alternate bars and meandering of Yalin and da Silva (2001) is re-considered in view of additional field and laboratory data from the recent literature and data resulting from two series of experimental runs carried out in two sediment transport flumes. This leads to a number of modifications of the boundary-lines in the related existence-region diagram of Yalin and da Silva. The size of the largest horizontal coherent structures (HCS’s) of an alternate bar inducing flow was then investigated experimentally on the basis of three series of flow velocity measurements. These were carried out in a 21m-long, 1m-wide straight channel, conveying a 4cm-deep flow. The bed consisted of a silica sand having a grain size of 2mm; its surface was flat. The measurements were carried out using a Sontek 2D Micro ADV. The horizontal burst length was found to be between five and seven times the flow width. The effect of the HCS’s on the mean flow was also investigated. A slight internal meandering of the flow caused by the superimposition of burst-sequences on the mean flow was clearly detectable. Finally, with the aid of three new series of measurements in the same channel, an attempt was made to penetrate the dynamics and life-cycle of the HCS’s. For this purpose, quadrant analysis was used; the cross-sectional distribution of relevant statistical turbulence-related parameters was investigated; and cross-correlations of flow velocity along the flow depth and across the channel were performed. The analysis indicates that the HCS’s originate near the channel banks, with the location of ejections and sweeps being anti-symmetrically arranged with regard to the channel centreline, and then evolve so as to occupy the entire depth of the water and the entire width of the channel. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2010-03-09 10:20:53.596
14

Large-eddy simulation and modelling of dissolved oxygen transport and depletion in water bodies

Scalo, CARLO 04 July 2012 (has links)
In the present doctoral work we have developed and tested a model for dissolved oxygen (DO) transfer from water to underlying flat and cohesive sediment beds populated with DO-absorbing bacteria. The model couples Large-Eddy Simulation (LES) of turbulent transport in the water-column, a biogeochemical model for DO transport and consumption in the sediment, and Darcy’s Law for the pore water-driven solute dispersion and advection. The model’s predictions compare well against experimental data for low friction-Reynolds numbers (Re). The disagreement for higher Re is investigated by progressively increasing the complexity of the model. A sensitivity analysis shows that the sediment-oxygen uptake (or demand, SOD) is approximately proportional to the bacterial content of the sediment layer, and varies with respect to fluid dynamics conditions, in accordance to classic high-Schmidt-number mass-transfer laws. The non- linear transport dynamics responsible for sustaining a statistically steady SOD are investigated by temporal- and-spatial correlations and with the aid of instantaneous visualizations: the near-wall coherent structures modulate the diffusive sublayer, which exhibits complex spatial and temporal filtering behaviours; its slow and quasi-periodic regeneration cycle determines the streaky structure of the DO field at the sediment-water interface (SWI), retained in the deeper layers of the porous medium. Oxygen depletion dynamics are then simulated by preventing surface re-areation with turbulent mixing driven by an oscillating low-speed current — an idealization of hypolimnetic DO depletion in the presence of a non-equilibrium periodic forcing. The oxygen distribution exhibits a self-similar pattern of decay with, during the deceleration phase, oscillations modulated by the periodic ejection of peaks of high turbulent mass flux (pumping oxygen towards the SWI), generated at the edge of the diffusive sublayer at the end of the acceleration phase. These fronts of highly turbulent mixing propagate away from the SWI, at approximately constant speed, in layers of below-average oxygen concentration. Finally, the model has been tested in a real geophysical framework, reproducing published in-situ DO measurements of a transitional flow in the bottom boundary layer of lake Alpnach. A simple model for the SOD is then derived for eventual inclusion in RANSE biogeochemical management-type models for similar applications. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2012-07-04 11:13:24.936
15

Study of coherent structures in turbulent flows using Proper Orthogonal Decomposition

2014 November 1900 (has links)
For many decades, turbulence has been the subject of extensive numerical research and experimental work. A bottleneck problem in turbulence research has been to detect and characterize the energetic, space and time-dependent structures and give a mathematical definition to each topology. This research presents a fundamental study of coherent structures, embedded in turbulent flows, by use of Proper Orthogonal Decomposition (POD). The target is to detect dominant features which contain the largest fraction of the total kinetic energy and hence contribute more to a turbulent flow. POD is proven to be a robust methodology in multivariate analysis of non-linear problems. This method also helps to obtain a low-dimensional approximation of a high-dimensional process, like a turbulent flow. This manuscript-based dissertation consists of five chapters. The first chapter starts with a brief introduction to turbulence, available simulation techniques, limitations and practical applications. Next, POD is introduced and the step-by-step approach is explained in detail. Three submitted manuscripts are presented in the subsequent chapters. Each chapter starts with introducing the study case and explaining the contribution of the study to the whole topic and also has its topic-relevant literature review. Each article consists of two parts: flow simulation and verification of the results at the onset, followed by POD analysis and reconstruction of the turbulent flow fields. For flow simulation, Large Eddy Simulation (LES) was performed to obtain databases for POD analysis. The simulations were validated by making comparison with available experimental and numerical studies. For each case, coherent topologies are characterized and the contribution of kinetic energy for each structure is determined and compared with previous literature. The first manuscript focused on investigating the large-scale dynamics in the wake of an infinite square cylinder. This case is the first step towards the targeting study case of this research, i.e. flow over rib roughened walls. The main purpose the first step is to establish a benchmark for comparison to the more complicated cases of a square cylinder with a nearby wall and flow over a rib-roughened surface. For POD analysis, the three-dimensional velocity field is obtained from LES of the flow around an infinite square cylinder at a Reynolds number of Re = 500. The POD algorithm is examined and the total energy of the flow is found to be well captured by only a small number of eigenmodes. From the energy spectrum, it is learned that each eigenmode represents a particular flow characteristic embedded in the turbulent wake, and eigenmodes with analogous characteristics can be bundled as pairs. Qualitative analysis of the dominant modes provided insight as to the spatial distribution of dominant structures in the turbulent wake. Another outcome of this chapter is to develop physical interpretations of the energetic structures by examining the temporal coefficients and tracking their life-cycle. It was observed that the paired temporal coefficients are approximately sinusoidal with similar order of magnitude and frequency and a phase shift. Lastly, it was observed that the turbulent flow field can be approximated by a linear combination of the mean flow and a finite number of spatial modes. The second manuscript analyses the influence of a solid wall on the wake dynamics of an infinite square cylinder. Different cases have been studied by changing the distance between the cylinder and the bottom wall. From the simulation results, it is learned that the value of drag and lift coefficients can be significantly affected by a nearby solid wall. From the energy decay spectrum it is observed that the energy decay rate varies for different gap ratios and accordingly a physical explanation is developed. Visualization of coherent structures for each case shows that for larger gaps, although the structures are distorted and inclined away from the wall, the travelling wave characteristic persists. Lastly, it is observed that as the gap ratio gets smaller, energetic structures originated by the wall begin to appear in the lower index modes. The last manuscript presents a numerical study of the structures in turbulent Couette flow with roughness on one wall, which as mentioned earlier, is the targeting study case of this research. Flow over both roughened and smooth surfaces was examined in a single study. Comparison was made with experiments and other numerical studies to verify the LES results. The mean velocity distribution across the channel shows that the rib roughness on the bottom wall has a strong effect on the velocity profile on the opposite wall. The energetic coherent dynamics of turbulent flow were investigated by the use of POD. The energy decay spectrum was analysed and the influence of a roughened wall and each roughness element on formation of those structures was investigated. Coherent POD modes on a spanwise sampling plane are detected. A secondary swirling motion is visualized, for the first two modes and counter-rotating cells are observed in the lower region of the channel above the rough wall for the higher modes. At the end, a quantitative analysis of the POD temporal coefficients was performed, which characterize the life-cycle of each coherent dynamic. A motivating outcome of this analysis is to decompose the time trace curves into quasi-periodic and fluctuations curves and to detect a linkage between these life cycles and physical meaning and location of each energetic pattern. At the end, in a closuring chapter, concluding remarks of this research work are presented in more detail and some potential extensions have been proposed for future researchers.
16

Simulação da dispersão de poluentes na camada limite planetária : um modelo determinístico-estocástico

Gisch, Debora Lidia January 2018 (has links)
Questões ambientais estão no centro das discussões nas últimas décadas. A poluição atmosférica, causada pela expansão pós-revolução industrial fez surgir a necessidade de aprender a descrever, usando modelos matemáticos, esse fenômeno. Com esse conhecimento pode-se propor soluções que mitiguem a poluição e os danos colaterais causados ao ambiente. A dispersão de poluentes modelada por soluções analíticas, a partir das equações de advecção-difusão oferecem um conhecimento sobre cada componente que constrói a equação, característica inexistente em outras abordagens, como a numérica. Entretanto ela era incapaz de descrever propriedades que se referem à turbulência, as estruturas coerentes, causadas por componentes não-lineares suprimidas por construção das equações governantes do modelo. Este trabalho estudou uma forma de recuperar características associadas à turbulência através de uma componente fundamental em estruturas coerentes, a fase. Essa é incluída no modelo que passa a descrever manifestações da turbulência em processos de dispersão através de flutuações de pequena escala na concentração da solução do modelo sesquilinear, que é determinístico-estocástico. No decorrer do trabalho há um estudo através de variações de parâmetros para compreender os efeitos da fase no modelo. Ele também foi aplicado ao experimento de Copenhagen e a dois cenários reais com a intenção de compreender o modelo frente à variáveis micrometeorológicas assim como aprimorá-lo para simular a dispersão de poluentes oriundos de fontes de forma realística. / Environmental issues have been at the center of discussions in the last few decades. Atmospheric pollution, caused by post-industrial revolution, has increased the necessity to describe, using mathematical models, this phenomenon. With this knowledge is possible to propose solutions mitigating the pollution and collateral damages caused in the environment. The pollutant dispersion modeled by analytical solutions, from advection-diffusion equations, offers a knowledge about each component that constructs the equation, a characteristic that does not exist in other approaches, such as numerical. However it was unable to describe properties that refer to turbulence, coherent structures, caused by nonlinear components suppressed by constructing the model governing equations. This work studied a way to recover characteristics associated with turbulence through a fundamental component in coherent structures, the phase. This is included in the model which describes manifestations of turbulence in the dispersion process through the presence of small-scale concentration fluctuations in the sesquilinear model, which is deterministicstochastic. In the course of this work there is a study through variations of parameters to understand the phase effects in the model. It was also applied to Copenhagen experiment and to two real scenarios with the intention of understanding the model regarding micrometeorological variables as well as improving it to simulate the pollutant dispersion from sources in a realistic way.
17

Simulação da dispersão de poluentes na camada limite planetária : um modelo determinístico-estocástico

Gisch, Debora Lidia January 2018 (has links)
Questões ambientais estão no centro das discussões nas últimas décadas. A poluição atmosférica, causada pela expansão pós-revolução industrial fez surgir a necessidade de aprender a descrever, usando modelos matemáticos, esse fenômeno. Com esse conhecimento pode-se propor soluções que mitiguem a poluição e os danos colaterais causados ao ambiente. A dispersão de poluentes modelada por soluções analíticas, a partir das equações de advecção-difusão oferecem um conhecimento sobre cada componente que constrói a equação, característica inexistente em outras abordagens, como a numérica. Entretanto ela era incapaz de descrever propriedades que se referem à turbulência, as estruturas coerentes, causadas por componentes não-lineares suprimidas por construção das equações governantes do modelo. Este trabalho estudou uma forma de recuperar características associadas à turbulência através de uma componente fundamental em estruturas coerentes, a fase. Essa é incluída no modelo que passa a descrever manifestações da turbulência em processos de dispersão através de flutuações de pequena escala na concentração da solução do modelo sesquilinear, que é determinístico-estocástico. No decorrer do trabalho há um estudo através de variações de parâmetros para compreender os efeitos da fase no modelo. Ele também foi aplicado ao experimento de Copenhagen e a dois cenários reais com a intenção de compreender o modelo frente à variáveis micrometeorológicas assim como aprimorá-lo para simular a dispersão de poluentes oriundos de fontes de forma realística. / Environmental issues have been at the center of discussions in the last few decades. Atmospheric pollution, caused by post-industrial revolution, has increased the necessity to describe, using mathematical models, this phenomenon. With this knowledge is possible to propose solutions mitigating the pollution and collateral damages caused in the environment. The pollutant dispersion modeled by analytical solutions, from advection-diffusion equations, offers a knowledge about each component that constructs the equation, a characteristic that does not exist in other approaches, such as numerical. However it was unable to describe properties that refer to turbulence, coherent structures, caused by nonlinear components suppressed by constructing the model governing equations. This work studied a way to recover characteristics associated with turbulence through a fundamental component in coherent structures, the phase. This is included in the model which describes manifestations of turbulence in the dispersion process through the presence of small-scale concentration fluctuations in the sesquilinear model, which is deterministicstochastic. In the course of this work there is a study through variations of parameters to understand the phase effects in the model. It was also applied to Copenhagen experiment and to two real scenarios with the intention of understanding the model regarding micrometeorological variables as well as improving it to simulate the pollutant dispersion from sources in a realistic way.
18

The Domain Dependence of Chemotaxis in a Two-Dimensional Turbulent Flow

January 2015 (has links)
abstract: Presented is a study on the chemotaxis reaction process and its relation with flow topology. The effect of coherent structures in turbulent flows is characterized by studying nutrient uptake and the advantage that is received from motile bacteria over other non-motile bacteria. Variability is found to be dependent on the initial location of scalar impurity and can be tied to Lagrangian coherent structures through recent advances in the identification of finite-time transport barriers. Advantage is relatively small for initial nutrient found within high stretching regions of the flow, and nutrient within elliptic structures provide the greatest advantage for motile species. How the flow field and the relevant flow topology lead to such a relation is analyzed. / Dissertation/Thesis / Masters Thesis Mathematics 2015
19

Analise de estruturas coerentes de larga escala em jatos de dispersão bifasicos / Large scale coherent structures analysis in two-phase jets

Decker, Rodrigo Koerich 02 August 2008 (has links)
Orientadores: Milton Mori, Henry França Meier, Udo Fritsching / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-10T10:03:01Z (GMT). No. of bitstreams: 1 Decker_RodrigoKoerich_D.pdf: 3679156 bytes, checksum: 9c914896fd9d31753adf9c1bed158cac (MD5) Previous issue date: 2008 / Resumo: Este trabalho propõe o estudo de estruturas coerentes de larga escala por meio da utilização da metodologia ¿Interparticle Arrival Time¿ (IAT) no escoamento de um jato bifásico. Experimentos foram desenvolvidos em relação a diferentes condições de velocidade inicial com diâmetro médio de partícula igual a 50 µm, e para duas diferentes misturas de partículas, 50 µm e 90 µm, em diferentes proporções, e comparados em relação a perfis de velocidade média, intensidade de turbulência e velocidade RMS. Medidas relacionadas à distribuição IAT foram também adquiridas para todas as condições analisadas. Os experimentos foram desenvolvidos para diferentes posições axiais e radiais a partir da saída do orifício de formação do jato. Perfis radiais de velocidade média, flutuação de velocidade (velocidade RMS), intensidade de turbulência e ¿interparticle arrival time¿ (em termos de distribuição Chi2 e número de desvios) foram obtidos pelo sistema de ¿Phase Doppler Anemometry¿, atravessando o sistema de medição ponto a ponto na direção desejada. Além disto, as variações das condições de velocidade inicial, distribuição de partículas e razão de carga permitem a obtenção de importantes informações em relação às estruturas locais do escoamento e seus efeitos sobre o transporte macroscópico e turbulento de partículas entre o centro do jato e as regiões de contorno do mesmo. Assim é possível identificar que no centro do jato não existe a formação de Estruturas Coerentes de Larga Escala (ECLE), ou seja, o escoamento é dominado por estruturas incoerentes. Existem também fortes indícios de formação de ECLE em uma região radial entre o centro e a região de contorno, sendo estas dependentes da condição inicial de velocidade da fase gás. Além disto, partículas com maior diâmetro suprimem a formação de ECLE. A distribuição IAT prova ser uma ferramenta importante na identificação dos locais onde ECLEs vêm a influenciar a distribuição de partículas, formando ¿clusters¿. A investigação extensiva de dados experimentais em relação ao comportamento da fase dispersa no escoamento gás sólido em um jato pode ser utilizada como uma importante fonte de dados para uma validação detalhada, por meio de simulação numérica, do escoamento disperso bifásico, incluindo as fortes interações entre as fases gás e particulada / Abstract: A study of large scale coherent structures by Interparticle Arrival Time (IAT) of a two phase jet flow is proposed. Measurements were carried out for different initial velocities with 50 µm particle mean diameter, and for two different particle mixtures with mean particle diameter of 50 µm and 90 µm, in different proportions, and analyzed in relation to different variables. Measurements related to IAT were also acquired for all analysis conditions. The experiments were developed for different axial and radial distances from the nozzle outlet. Radial profiles of mean velocity, RMS velocity, turbulence intensity and the IAT (in terms of Chi2 and number of deviation) were measured by a Phase Doppler Anemometry system, traversing the measuring device stepwise in the desired direction. Furthermore, the variation of the initial velocity conditions, particle diameter distributions, and particle loadings yield important information about the local flow structures and its effect on the macroscopic as well as the turbulent particle transport between the jet centre and the outer shear layer. Thus, it is possible to identify that in the centre line of the jet there is no formation of large scale coherent structures (ECLE), i. e., the flow is dominated by incoherent structures. There is also strong evidence of ECLE formation in a radial position between the centre and the outer shear layer of the jet, which are dependent on the gas initial velocity. Furthermore, particles with large diameter suppress ECLE formation. The IAT distribution proofs to be an important tool to identify regions where large scale coherent structures influence the particle distribution and tend to form particle clusters. The derived extensive experimental data set for the particle behaviour at the two-phase jet may serve as a basis for the detailed validation of numerical simulations of dispersed two phase flow behaviour including strong phase interactions between gaseous and particulate phases / Doutorado / Desenvolvimento de Processos Químicos / Doutor em Engenharia Química
20

Dynamique, interactions et instabilités de structures cohérentes agéostrophiques dans les modèles en eau peu profonde / Dynamics, interactions and instabilities of ageostrophic coherent structures in rotating shallow water models

Lahaye, Noé 03 October 2014 (has links)
Les structures cohérentes sont fréquemment observées dans les écoulements océaniques et atmosphériques. A moyenne et grande échelle, ces structures sont souvent proches de l'équilibre géostrophique. Cependant, pour des nombres de Rossby plus grands, les effets agéostrophiques entrent en jeu et modifient leur dynamique. Les propriétés des structures cohérentes agéostrophiques sont étudiées dans cette thèse, principalement à l'aide de simulations numériques, dans des modèles conceptuels des écoulements océaniques et atmosphériques à grande et moyenne échelle : les modèles en eau peu profonde. L'instabilité de tourbillons intenses (tourbillons anticycloniques isolés et cyclones tropicaux) dans les modèles en eau peu profonde à une et deux couches est étudiée. L'impact des différents paramètres sur ces instabilités est quantifié, et des simulations numériques de leur saturation non linéaire permet de dégager l'importance des mouvements agéostrophiques associés. Dans un second temps, des structures quasi-stationnaires agéostrophiques sont obtenues numériquement dans les modèles à une et deux couches. Ces structures, consistant en des dipôles et tripôles de vorticité (barotropes ou baroclines) sont stables, et la circulation agéostrophique qui leur est associée n'entraîne pas d'émission d'ondes d'inertie-gravité. Enfin, la turbulence d'ondes et de tourbillons en déclin dans un modèle à une couche est étudiée. L'évolution de l'écoulement à partir de conditions initiales très différentes est discutée, notamment en ce qui concerne les propriétés agéostrophiques de l'écoulement, le couplage ondes-tourbillons et la sensibilité aux conditions initiales. / Coherent structures are ubiquitous features of atmospheric and oceanic flows. Their associated meso- and large scale circulation is in geostrophic equilibrium. However, at increasing Rossby numbers, ageostrophic effects may push the structures away from this equilibrium, and new types of instabilities can also disturb their dynamics. In this thesis, the properties of ageostrophic coherent structures are investigated, mainly by means of direct numerical simulations. This is done in the framework of simplified conceptual models of meso- and large scale oceanic and atmospheric flows, namely Rotating Shallow Water models. The instability of intense vortices (isolated anticyclonic vortices and tropical cyclones) in one-layer and two-layer shallow water models are studied. Direct numerical simulations of the nonlinear saturation of these instabilities allow us to study the properties of the ageostrophic part of the flow, such as the inertia-gravity wave emission and the formation of shocks. Then, quasi-stationary ageostrophic structures are obtained by means of numerical simulations in one-layer and two-layer models. It consists of vortex dipoles or tripoles, either baroclinic or barotropic, which are stable and whose ageostrophic component does not imply inertia-gravity waves emission. Finally, decaying vortex and wave turbulence is studied in the one-layer model. The evolution of the flow for very different initial conditions is discussed and we put the emphasis on the ageostrophic properties of the flow, the wave-vortex coupling and the sensitivity to initial conditions.

Page generated in 0.1748 seconds