• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 16
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 53
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Tearing of Styrene Butadiene Rubber using Finite Element Analysis

Bahadursha, Venkata Rama Lakshmi Preeethi 27 May 2015 (has links)
No description available.
22

Applications of Cohesive Zone Models in Dynamic Failure Analysis

Li, Bo 07 June 2016 (has links)
No description available.
23

Mécanismes de transports dans la fissuration des matériaux hétérogènes : application à la durée de vie d’exploitation des centrales nucléaires / Taking into account the transport machanisms in the fracture of heterogeneous materials : application to the nuclear power plant aging

Bichet, Lionel 30 January 2017 (has links)
Les propriétés du béton constituant les enceintes de confinement des centrales électronucléaires évoluent sous les effets de mécanismes de vieillissement résultant notamment de transferts couplés de chaleur et de masse au sein du matériau. Ces phénomènes peuvent être modélisés par des équations de transports moyennées : lois de Fick pour le transport d’espèces en solution et lois de Fourier pour la description de la diffusion thermique. Dans cette étude, les développements concernent la diffusion de la thermique dans un milieu hétérogène fissuré représentant un matériau cimentaire dégradé chimiquement. Le problème thermo-mécanique est traité à l'aide d'une approche multi-corps reliés par des lois d’interactions enrichies (zones cohésives). La diffusion thermique est écrite dans le formalisme cohésif-volumique en prenant en compte le couplage entre un état d'endommagement local de la zone cohésive et une conductivité homogénéisée. Afin d'optimiser les coûts de calculs, une étude est menée sur la dimension d'un volume élémentaire représentatif (VER). Pour cela, la méthode d'eigenerosion est étendue à la fissuration de milieux hétérogènes puis appliquée aux milieux cimentaires. La propagation de fissures sous chargement thermique est ensuite analysée dans des VERs de béton dégradés représentatifs des enceintes de confinement des centrales nucléaires après plusieurs années. Le vieillissement est modélisé par un taux de pré-dégradation initial entre le mortier et les granulats. Le développement de multi-fissures est relié au taux de pré-dégradation et la formation "d'écrans" à la diffusion de la thermique est mise en avant. / During their confinement in a nuclear power plant, the mechanical properties of the constitutive materials of concrete change as a result of ageing. This is due to the transportation of chemical species at the microscopic level of the media. Firstly, this can be modelled with average equations. The Fick laws represent the evolution of chemical diffusion and the Fourier laws, the transportation of heat at a mesoscopic level. In this research, we will consider thermal evolution on a fractured media.This thermomechanical problem is solved with a staggered method. The mechanical contribution used an approach based on multi-bodies system linked with cohesive zone models. The thermal problem is based on the approximation of the heat transfer equation at the cohesive interface. This approach has been implemented and validated. The description of the heat trough the interface is composed with the definition of an homogenised conductivity and the local damage parameter. In order to optimize the computational cost with a good agreement of the crack propagation, a criterion is proposed for sizing a representative elementary volume (REV). The eigenerosion method is used, validated and extended to heterogeneous media. Two studies are carried out on the morphological properties on a cementious media. As a result of those studies, a minimal size for a REV is defined.Crack spread under thermal loads are investigated on a media representing the concrete of the containment of a nuclear power station. The ageing effect are taken into account as an initial damage between the mortar and the aggregates. These parameters are expressed in terms of rate of initial damage. A study is proposed for different values of this rate. As assumed, the development of multi-cracks is linked with the rate of initial damage and the creation of thermal border is proposed.
24

EFFECT OF INTERFACE CHEMICAL COMPOSITION ON THE HIGH STRAIN RATE DEPENDENT MECHANICAL BEHAVIOR OF AN ENERGETIC MATERIAL

Chandra Prakash (5930159) 04 January 2019 (has links)
<div>A combined experimental and computational study has been performed in order to understand the effect of interface chemical composition on the shock induced mechanical behavior of an energetic material (EM) system consisting of Hydroxyl-Terminated Polybutadiene (HTPB) binder and an oxidizer, Ammonium Perchlorate (AP), particle embedded in the binder. The current study focuses on the effect of interface chemical composition between the HTPB binder material and the AP particles on the high strain rate mechanical behavior. The HTPB-AP interface chemical composition was changed by adding cyanoethylated polyamine (HX-878 or Tepanol) as a binding agent. A power law viscoplastic constitutive model was fitted to nanoscale impact based experimental stress-strain-strain rate data in order to obtain the constitutive behavior of the HTPBAP interfaces, AP particle, and HTPB binder matrix. An in-situ mechanical Raman spectroscopy framework was used to analyze the effect of binding agent on cohesive separation properties of the HTPB-AP interfaces, AP particle, and HTPB binder matrix. In addition, a combined mechanical Raman spectroscopy and laser impact set up was used to study the effect of strain rate, as well as the interface chemical composition on the interface shock viscosity. Finally, high velocity strain rate impact simulations were performed using an explicit cohesive finite element method framework to predict the effect of strain rate, interface strength, interface friction, and interface shock viscosity on possible strain rate dependent temperature rises at high strain rates approaching shock velocities. </div><div><br></div><div>A modified stress equation was used in the cohesive finite element framework in order to include the effect of shock viscosity on the shock wave rise time and shock pressure during impact loading with strain rates corresponding to shock impact velocities. It is shown that increasing the interface shock viscosity, which can be altered by changing the interface chemical composition, increases the shock wave rise time at the analyzed interfaces. It is shown that the interface shock viscosity also plays an important role in determining the temperature increase within the microstructure. Interface shock viscosity leads to a decrease in the overall density of the possible hot-spots which is caused by the increase in dissipation at the shock front. This increase in shock dissipation is accompanied by a decrease in the both the maximum temperature, as well as the plastic dissipation energy, within the microstructure during shock loading.</div>
25

Rate-dependent cohesive-zone models for fracture and fatigue

Salih, Sarmed January 2018 (has links)
Despite the phenomena of fracture and fatigue having been the focus of academic research for more than 150 years, it remains in effect an empirical science lacking a complete and comprehensive set of predictive solutions. In this regard, the focus of the research in this thesis is on the development of new cohesive-zone models for fracture and fatigue that are afforded an ability to capture strain-rate effects. For the case of monotonic fracture in ductile material, different combinations of material response are examined with rate effects appearing either in the bulk material or localised to the cohesive-zone or in both. The development of a new rate-dependent CZM required first an analysis of two existing methods for incorporating rate dependency, i.e.either via a temporal critical stress or a temporal critical separation. The analysis revealed unrealistic crack behaviour at high loading rates. The new rate-dependent cohesive model introduced in the thesis couples the temporal responses of critical stress and critical separation and is shown to provide a stable and realistic solution to dynamic fracture. For the case of fatigue, a new frequency-dependent cohesive-zone model (FDCZM) has been developed for the simulation of both high and low-cycle fatigue-crack growth in elasto-plastic material. The developed model provides an alternative approach that delivers the accuracy of the loading-unloading hysteresis damage model along with the computational efficiency of the equally well-established envelope load-damage model by incorporating a fast-track feature. With the fast-track procedure, a particular damage state for one loading cycle is 'frozen in' over a predefined number of cycles. Stress and strain states are subsequently updated followed by an update on the damage state in the representative loading cycle which again is 'frozen in' and applied over the same number of cycles. The process is repeated up to failure. The technique is shown to be highly efficient in terms of time and cost and is particularly effective when a large number of frozen cycles can be applied without significant loss of accuracy. To demonstrate the practical worth of the approach, the effect that the frequency has on fatigue crack growth in austenitic stainless-steel 304 is analysed. It is found that the crack growth rate (da/dN) decreases with increasing frequency up to a frequency of 5 Hz after which it levels off. The behaviour, which can be linked to martensitic phase transformation, is shown to be accurately captured by the new FDCZM.
26

Effect of Phase Transformation on the Fracture Behavior of Shape Memory Alloys

Parrinello, Antonino 16 December 2013 (has links)
Over the last few decades, Shape Memory Alloys (SMAs) have been increasingly explored in order to take advantage of their unique properties (i.e., pseudoelasticity and shape memory effect), in various actuation, sensing and absorption applications. In order to achieve an effective design of SMA-based devices a thorough investigation of their behavior in the presence of cracks is needed. In particular, it is important to understand the effect of phase transformation on their fracture response. The aim of the present work is to study the effect of stress-induced as well as thermo-mechanically-induced phase transformation on several characteristics of the fracture response of SMAs. The SMA thermomechanical response is modeled through an existing constitutive phenomenological model, developed within the framework of continuum thermodynamics, which has been implemented in a finite element frame-work. The effect of stress-induced phase transformation on the mechanical fields in the vicinity of a stationary crack and on the toughness enhancement associated with crack advance in an SMA subjected to in-plane mode I loading conditions is examined. The small scale transformation assumption is employed in the analysis according to which the size of the region occupied by the transformed material forming close to the crack tip is small compared to any characteristic length of the problem (i.e. the size of the transformation zone is thirty times smaller than the size of the cracked ligament). Given this assumption, displacement boundary conditions, corresponding to the Irwin’s solution for linear elastic fracture mechanics, are applied on a circular region in the austenitic phase that encloses the stress-induced phase transformation zone. The quasi-static stable crack growth is studied by assuming that the crackpropagates at a certain critical level of the crack-tip energy release rate. The Virtual Crack Closure Technique (VCCT) is employed to calculate the energy release rate. Fracture toughness enhancement associated with transformation dissipation is observed and its sensitivity on the variation of key characteristic non-dimensional parameters related to the constitutive response is investigated. Moreover, the effect of the dissipation due plastic deformation on the fracture resistance is analyzed by using a Cohesive Zone Model (CZM). The effect of thermo-mechanically-induced transformation on the driving force for crack growth is analyzed in an infinite center-cracked SMA plate subjected to thermal actuation under isobaric mode I loading. The crack-tip energy release rate is identified as the driving force for crack growth and is measured over the entire thermal cycle by means of the VCCT. A substantial increase of the crack-tip energy release rate – an order of magnitude for some material systems – is observed during actuation as a result of phase transformation, i.e., martensitic transformation occurring during actuation causes anti-shielding that might cause the energy release rate to reach the critical value for crack growth. A strong dependence of the crack-tip energy release rate on the variation of the thermomechanical parameters characterizing the material response is examined. Therefore, it is implied that the actual shape of the strain- temperature curve is important for the quantitative determination of the change of the crack-tip energy release rate during actuation.
27

Développement d’une stratégie de modélisation du délaminage dans les structures composites stratifiées / Development of a strategy to model delamination in laminated composite structures

Vandellos, Thomas 06 December 2011 (has links)
Les composites stratifiés de plis unidirectionnels en carbone/époxy sont fortement utilisés pour alléger les structures aéronautiques tout en conservant de bonnes propriétés structurales. Toutefois, les avantages de ce type de matériau ne sont pas encore pleinement exploités de par le manque de confiance accordée aux modèles de prévision de l’endommagement, dont notamment ceux concernant le délaminage. C’est pourquoi l’objectif de cette thèse était de développer une stratégie de modélisation du délaminage adaptée aux structures composites stratifiées. Cette stratégie s’est appuyée sur le développement d’un modèle de zone cohésive prenant en compte les ingrédients nécessaires à la bonne description de l’amorçage et de la propagation de la fissure : (i) un critère d’amorçage avec un renforcement en compression/cisaillement hors-plan, (ii) une loi de propagation décrivant l’évolution de la ténacité en fonction de la mixité de mode et (iii) la prise en compte du couplage inter/intralaminaire. Pour identifier ce nouveau modèle, une procédure d’identification efficace, s’appuyant sur un essai de traction sur plaque rainurée, a été mise en place. Cette procédure d’identification a permis de démontrer que la ténacité semble indépendante (i) de l’orientation des plis adjacents à l’interface et (ii) de l’empilement étudié. De même, pour décrire l’évolution de la ténacité, une nouvelle loi de propagation adaptée au matériau carbone/époxy a été proposée. Pour finir, la stratégie de modélisation, complétée par une stratégie de calcul, a été appliquée sur différents cas structuraux pour mettre en avant ses apports et ses premières limites. / The carbon/epoxy laminated composites of unidirectional plies are strongly used in order to reduce the weight of aeronautical structures while at the same time proposing good structural properties. However, the advantages of this kind of material are not fully exploited due to the lack of confidence in damage models, like ones concerning delamination. Then, the purpose of this work was the development of a strategy to model delamination in laminated composite structures. This strategy was based on the development of a cohesive zone model taking into account the ingredients necessary to the well description of the onset of delamination and the crack growth: (i) an onset criterion with an out-of-plan compression/shearing reinforcement, (ii) a propagation law describing the evolution of the fracture toughness as a function of mixed mode ratio and (iii) the inter/intralaminar coupling. To identify this new model, an efficient identification procedure, basing on a tensile test on notched specimen, has been proposed. This identification procedure has demonstrated that the fracture toughness seems to be independent of (i) the orientation of plies closed to the interface and (ii) the stacking sequence. Furthermore, to describe the evolution of the fracture toughness, a new propagation law adapted to carbon/epoxy material has been proposed. Finally, the strategy to model delamination, completed by a calculation strategy, has been applied on several structural cases to prove its contributions and its first limitations.
28

Prediction of Elastic Properties of a Carbon Nanotube Reinforced Fiber Polymeric Composite Material Using Cohesive Zone Modeling

Kulkarni, Mandar Madhukar 17 April 2009 (has links)
No description available.
29

Modeling of fracture in heavy steel welded beam-to-column connection submitted to cyclic loading by finite elements

Lequesne, Cédric 25 June 2009 (has links)
During the earthquake in Japan and California in the 1990s, some weld beam-to-column connections had some cracks in heavy rigid frame steel building. Consequently it is required to assess the performance of the welded connection in term of rotation capacity and crack propagation strength. Some experimental tests have been performed. The weld connections were submitted to cyclic loading with increasing amplitude until macro crack event. However the crack phenomenon depends on many parameters: the geometry, the material, the welding process. For this reason, it is interesting to develop a finite element modeling of this connection to complete these experiments and perform a parametric study. The welded connection is modeled by three dimensional mixed solid elements. The constitutive law is elastoplastic with isotropic hardening identified for the base metal and the weld metal. The crack propagation is modeled by cohesive zone model. The parameters of the cohesive zone model have been identified by inverse method with the modeling of three point bend tests of a pre-cracked sample performed on the base and weld metal. The fatigue damage generated by the cyclic loading is computed by the fatigue continuum damage model of Lemaitre and Chaboche and it is coupled with the cohesive zone model. The damage and the crack propagation depend on the residual stresses generated by the welding process. They have been computed by a simulation of this process with a thermo mechanical finite element analysis. This thesis presents the used models and the results compared with the experimental tests.
30

Simulation of delamination in composites under quasi-static and fatigue loading using cohesive zone models

Turon Travesa, Albert 18 December 2006 (has links)
Es desenvolupa una eina de disseny per l'anàlisi de la tolerància al dany en composites. L'eina pot predir el inici i la propagació de fisures interlaminars. També pot ser utilitzada per avaluar i planificar la necessitat de reparar o reemplaçar components durant la seva vida útil. El model desenvolupat pot ser utilitzat tan per simular càrregues estàtiques com de fatiga.El model proposat és un model de dany termodinàmicament consistent que permet simular la delaminació en composites sota càrregues variables. El model es formula dins el context de la Mecànica del Dany, fent ús dels models de zona cohesiva. Es presenta un metodologia per determinar els paràmetres del model constitutiu que permet utilitzar malles d'elements finits més bastes de les que es poden usar típicament. Finalment, el model és també capaç de simular la delaminació produïda per càrregues de fatiga. / A design tool for the analysis of delamination in laminated composites was developed. The design tool is developed using the damage-tolerance concept to predict both delamination initiation and growth. Therefore, the model developed can be used to perform either strength or damage-tolerance verification of new components, and can be used to assess the necessity to repair or replace in-service components. The model developed can be used either to simulate quasi-static or fatigue loading.A thermodinamically consistent damage model is proposed for the simulation of delamination in composite materials under variable-mode loading. The model is formulated in the context of Damage Mechanics by means of the Cohesive Zone Model concept. Moreover, a methodology to determine the parameters of the constitutive model is proposed. The methodology presented allows the use of coarser meshes that is usually admissible. Finally, the model has been enhanced to simulate high cycle fatigue.

Page generated in 0.0954 seconds