• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementing a visualization tool for myocardial strain tensors

Rönnbrant, Anders January 2005 (has links)
<p>The heart is a complex three-dimensional structure with mechanical properties that are inhomogeneous, non-linear, time-variant and anisotropic. These properties affect major physiological factors within the heart, such as the pumping performance of the ventricles, the oxygen demand in the tissue and the distribution of coronary blood flow.</p><p>During the cardiac cycle the heart muscle tissue is deformed as a consequence of the active contraction of the muscle fibers and their relaxation respectively. A mapping of this deformation would give increased understanding of the mechanical properties of the heart. The deformation induces strain and stress in the tissue which are both mechanical properties and can be described with a mathematical tensor object.</p><p>The aim of this master's thesis is to develop a visualization tool for the strain tensor objects that can aid a user to see and/or understand various differences between different hearts and spatial and temporal differences within the same heart. Preferably should the tool be general enough for use with different types of data.</p>
2

Implementing a visualization tool for myocardial strain tensors

Rönnbrant, Anders January 2005 (has links)
The heart is a complex three-dimensional structure with mechanical properties that are inhomogeneous, non-linear, time-variant and anisotropic. These properties affect major physiological factors within the heart, such as the pumping performance of the ventricles, the oxygen demand in the tissue and the distribution of coronary blood flow. During the cardiac cycle the heart muscle tissue is deformed as a consequence of the active contraction of the muscle fibers and their relaxation respectively. A mapping of this deformation would give increased understanding of the mechanical properties of the heart. The deformation induces strain and stress in the tissue which are both mechanical properties and can be described with a mathematical tensor object. The aim of this master's thesis is to develop a visualization tool for the strain tensor objects that can aid a user to see and/or understand various differences between different hearts and spatial and temporal differences within the same heart. Preferably should the tool be general enough for use with different types of data.
3

Implementace algoritmu LoD terénu / Terrain LoD Algorithm Implementation

Radil, Přemek January 2012 (has links)
This thesis discusses implementation of LoD terrain visualization algorithm Seamless Patches for GPU-Based Terrain Rendering as extension for Coin3D library. It presents procedures which this algorithm uses for displaying large terrain datasets. Entire terrain is composed of patches that are stored in patch hierarchy. Patch hierarchy is traversed during runtime to generate active patches based on observer's position. Each patch consists of predefined tiles and connection strips so it doesn't need to store any geometry. During render of tiles and strips, displacement shader is applied. This thesis also evaluates results achieved in sample application and suggests some modifications to further increase algorithm performance.
4

Interaktivní editor a prohlížeč animací / Interactive Animation Viewer and Editor

Ducháč, Michal Unknown Date (has links)
Since the introduction of high end graphical workstations, computer animation has quickly replaced the traditional means of animation. Nowadays computer animation has many applications e.g. video games, motion picture industry, media, weather forecasting and many others. This master thesis discusses various techniques used to created animations using computers. Keyframing, is the most common approach in computer animation. Borrowing its name from the concept of traditional hand animation, the workflow process remained the same. Basic principles of animation using key-frames are explained and an Interactive Animation Editor solution based on keyframing is proposed and the implementation of this editor is described. Editor uses the Kochanek-Bartels interpolation of values between each key-frame.

Page generated in 0.0289 seconds