• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 16
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 72
  • 29
  • 25
  • 23
  • 17
  • 15
  • 14
  • 13
  • 12
  • 10
  • 10
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Water Quality Study of Southshore of Lake Pontchartrain

Martinez Fernandez, Maria Carolina 10 August 2005 (has links)
In 2004, a field sampling study was initiated along the southern shoreline area of Lake Pontchartrain in Jefferson Parish, specifically, around Bonnabel Canal (Pumping Station No.1) to identify the effect of urban stormwater discharges on Lake Pontchartrain and to simulate the plume patterns from the Bonnabel Canal. Sixteen sampling stations were selected along the south shore of Lake Pontchartrain. Under dry weather conditions Fecal Coliform values exceeded the limit of 200 MPN/100mL at 3 of 16 stations. Fecal Coliform counts were found to be "wet" weather-dependent and unsuitable for primary contact recreation for at least three to four days following a pumping/rain event. A 3-D Hydrodynamic Model (COHERENS) and the TECPLOT™ equation feature were used for the prediction of contaminant plumes from the Bonnabel Canal into the Lake Pontchartrain. The model verified the three day wet weather effect of stormwater discharges along the shoreline of the study area.
2

Characterization of Coliform Bacteria in Drinking Water Treatment Plant

Westöö, Oskar January 2021 (has links)
Termen koliforma bakterier beskriver en grupp indikatororganismer som används för att bedöma renligheten och integriteten hos reningsverk samt distributionssystem som nyttjas vid dricksvattenproduktion. För närvarande ställer styrande förvaltningsmyndigheter endast krav på detektion av antalet koliforma bakterier i dricksvatten via odlingsbaserade metoder. Dessa odlingsbaserade metoder särskiljer och upptäcker koliforma bakterier, och Escherichia coli specifikt, baserat på deras tillväxt samt enzymatiska aktivitet på selektiva kromogena och fluorogena agarplattor. Den definition av koliforma bakterier som dessa lagstiftningar ger upphov till identifierar endast koliforma bakterier baserat på deras metabolism och enzymatiska aktivitet, vilket är otillräckligt för att taxonomiskt identifiera olika bakterier inom denna grupp. För att uppnå detta krävs en definition baserad på fylogenetik. Detta masterexamensarbete beskriver undersökandet av metoder för taxonomisk identifiering av koliforma bakterier baserade på en kombination av odlingsbaserade och molekylära metoder. Vattenprover från Mälaren och Lovös vattenverk i Stockholm användes för att isolera koliforma bakterier via membranfiltrering, följt av odling på selektiva medier. De isolerade kolonierna och membranfiltrerna användes för att extrahera genomiskt DNA, följt av amplifiering av specifika gener associerade med E. coli och koliforma bakterier via PCR. Dessa inkluderade lacZ-genen, uidA-genen, yaiO-genen och 16S rRNA-genen. Produkterna från lyckade genamplifieringar sekvenserades för att taxonomiskt klassificera sekvenserna och identifiera olika koliforma bakterier. Två vattenprover med inloppsvatten skickades även för metagenomisk analys av dess mikrobiom. Dessa resulta indikerade att ett odlingssteg var nödvändigt för att producera tillräckligt med biomassa och genomiskt DNA för att lyckas med genamplifieringar utan att behöva filtrera enorma mängder vattenprover. De utvalda primrarna uppvisade även varierande framgång i att amplifiera målgenerna hos koliforma bakterier. Bakteriekoloniernas fysiska utseende på de selektiva agarplattorna och resultaten från genamplifieringarna uppvisade inte sammanhängande resultat, vilket indikerar ett behov av att ytterligare undersöka och optimera de utförda PCR-protokollen. Trots detta visade metoden potential för taxonomisk identifiering av koliforma bakterier. 16S rRNA-gensekvenserna möjliggjorde identifieringen av potentiella kontaminanter som grampositiva bakterier (Micrococcus and Staphylococcus) och andra, icke-koliforma, gramnegativa bakterier (Pseudomonas and Aeromonas) på de selektiva agarplattorna. Denna information kombinerat med bakteriekoloniernas utseende på agarplattorna och resultaten från övriga genamplifieringar kan möjliggöra ett sätt att skilja på falska positiva, falska negativa, sanna positiva och sanna negativa resultat från nuvarande detektionsmetoder för koliforma bakterier. Ytterligare optimering av olika aspekter av metoderna och arbetsflödet kring identifiering av koliforma bakterier är nödvändig innan man kan införa ett liknande tillvägagångssätt i ett reningsverk. / The term coliform bacteria describes a group of indicator organisms used to measure the cleanliness and integrity of drinking water treatment plants and distribution systems. Currently, the only legal requirement set by government agencies pertains to the detection and enumeration of these bacteria via cultivation-based methods. These methods distinguish coliform bacteria and Escherichia coli based on their growth and enzymatic activity on selective chromogenic and fluorogenic agar plates. However, the legislative definition concerning their metabolism and enzymatic production is insufficient to identify bacteria within this group taxonomically. Instead, a definition based on phylogenetics is required. This master’s thesis describes the exploration of methods for the characterization and identification of coliform bacteria via a combination of cultivation-based and molecular methods. Water samples from Lake Mälaren and the Lovö drinking water treatment plant in Stockholm were used to isolate coliform bacteria via membrane filtration and cultivation on a selective agar medium. The isolated colonies and filtered membranes were subjected to DNA extraction, followed by gene amplification of target genes associated with E. coli and coliform bacteria via PCR. This included the lacZ gene, the uidA gene, the yaiO gene, and the 16S rRNA gene. Successful gene amplicons were sent for sequencing to assign taxonomic values to the sequences and identify coliform bacteria. Two inlet water samples were also sent for metagenomic analysis of the microbiome. An incubation step was necessary to gather enough biomass to extract sufficient genomic DNA for gene amplifications and avoid the need to filtrate large volumes of water. The selected primer pairs exhibited various degrees of success in amplifying the targeted genes of coliform bacteria. The physical appearance of coliform colonies on the selective chromogenic agar plates and the results from the gene amplifications displayed no discernable pattern, indicating the need to further investigate and optimize the PCR procedures. However, the method indicated a potential for coliform bacteria identification. 16S rRNA gene sequences allowed for the distinction of potential contaminants on the selective agar media in gram-positive bacteria (Micrococcus and Staphylococcus) and other non-coliform, gram-negative bacteria (Pseudomonas and Aeromonas). In conjunction with the physical appearance of bacterial colonies on selective media and successful gene amplicons of the targeted genes, this information could allow one to distinguish between false positive, false negative, true positive, and true negative results from current coliform detection and enumeration methods. Further optimization of various aspects of the coliform bacteria identification methods is necessary before introducing a similar approach to a water treatment plant context.
3

Electrodisinfection of Municipal Wastewater Effluent

Peterson, Mark 10 August 2005 (has links)
To avoid the spread of disease from sewage treatment effluents, pathogenic microorganisms present must be destroyed by one or a combination of disinfection methods. Chlorine remains the predominant disinfectant used although it consumes considerable amounts of energy and has associated exposure risks from production, transportation and storage of this poisonous gas. In addition to bacteria and other objectionable microorganisms, color, suspended and colloidal solids also require removal from water for reuse. Aluminum and iron additions have been used to coagulate and remove non-settleable solids. By electrically dissolving aluminum to form solids-bridging aluminum hydroxide, the water itself can also be disinfected by the effects of electrical fields and its reactions to form disinfectant chemicals and direct destruction of microorganisms in the water. This research investigated the effects of electrical current, time, and chloride concentration on the electrochemical disinfection of sewage treatment plant effluent using aluminum electrodes to substitute for chlorine disinfection.
4

Sediment Transport and Pathogen Indicator Modeling in Lake Pontchartrain

Chilmakui, Chandra Sekhar 20 January 2006 (has links)
A nested three dimensional numerical modeling application was developed to determine the fate of pathogen indicators in Lake Pontchartrain discharged from its tributaries. To accomplish this, Estuarine, coastal and ocean model with sediment (ECOMSED) was implemented to simulate various processes that would determine the fate and transport of fecal coliform bacteria in the lake. The processes included hydrodynamics, waves, sediment transport, and the decay and transport of the fecal coliforms. Wind and tidal effects were accounted along with the freshwater inflows. All the components of the modeling application were calibrated and validated using measured data sets. Field measurements of the conventional water quality parameters and fecal coliform levels were used to calibrate and validate the pathogen indicator transport. The decay of the fecal coliforms was based on the literature and laboratory tests. The sediment transport module was calibrated based on the satellite reflectance data in the lake. The north shore near-field model indicated that the fecal coliform plume can be highly dynamic and sporadic depending on the wind and tide conditions. It also showed that the period of impact due to a storm event on the fecal coliform levels in the lake can be anywhere from 1.5 days for a typical summer event to 4 days for an extreme winter event. The model studies showed that the zone of impact of the stormwater from the river was limited to a few hundred meters from the river mouth. Finally, the modeling framework developed for the north shore was successfully applied to the south shore of Lake Pontchartrain to simulate fate and transport of fecal coliforms discharged through the urban stormwater outfalls.
5

Assessing the Contamination Risk of Private Well Water Supplies in Virginia

Bourne, Amanda C. 31 July 2001 (has links)
When well water becomes contaminated to the extent that is does not meet EPA drinking water quality standards, it is considered unsafe for consumption. Nitrate and total coliform bacteria are both health contaminants and are both regulated in public water systems. A nitrate concentration of 10 mg/L or higher is considered unsafe, as is the presence of total coliform bacteria. Well degradation, inadequate well construction, and aquifer contamination can all result in contamination of well water. Factors such as well type, well age, well depth, treatment devices, population density, household plumbing pipe materials, and nearby pollution sources may affect household water quality. The specific objective of this study was to determine which factors influence nitrate levels and total coliform presence/absence of household well water. If possible, these influencing factors would be used to develop a relationship that would allow household residents to predict the nitrate level and total coliform presence/absence of their well water. As a result, a means of predicting the contamination risk to a specific well water supply under a given set of conditions, in addition to increasing awareness, could provide the homeowner with a rationale for further investigating the possibility of contamination. Existing data from the Virginia Cooperative Extension Household Water Quality Testing and Information Program were assembled for analyses in this project. The data consisted of 9,697 private household water supplies sampled from 1989-1999 in 65 Virginia counties. Initially, the entire state of Virginia was analyzed, followed by the five physiographic provinces of Virginia: the Blue Ridge, Coastal Plain, Cumberland Plateau, Ridge & Valley, and Piedmont. Ultimately, Louisa County was investigated to evaluate the possibility that better models could be developed using smaller land areas and, consequently, less geological variation. Least squares regression, both parametrically and non-parametrically, was used to determine the influence of various factors on nitrate levels. Similarly, logistic regression was used to determine the influence of the same parameters on nitrate categories, presence/absence of total coliform, and risk categories. Using stepwise model-building techniques, based primarily on statistical significance (p-values) and partial coefficient of determination (partial-R2), first and second-order linear models were evaluated. The best-fitting model only explained 58.5% of the variation in nitrate and none of the models fit well enough to be used for prediction purposes. However, the models did identify which factors were, in a statistical sense, significantly related to nitrate levels and total coliform presence/absence and quantified the strength of these relationships in terms of the percent of variation explained. / Master of Science
6

Relationship between Land Use and Surface Water Quality in a Rapidly Developing Watershed in Southeast Louisiana

Bourgeois-Calvin, Andrea 07 August 2008 (has links)
The Tangipahoa River and Natalbany River watersheds (Tangipahoa Parish/County) in the Lake Pontchartrain Basin (southeastern Louisiana) are experiencing rapid urbanization, particularly in the wake of the 2005 hurricane season. To document the impact of land use on water quality, thirty sites were monitored for surface water physiochemical, geochemical, and bacteriological parameters. Water quality data was compared to land use within four sub-watersheds of the Tangipahoa Watershed and three sub-watersheds of the Natalbany Watershed. Urbanization had the most profound impact on water quality of all land uses. In watersheds with little urban land cover (< 7% with the sub-watershed) waterbodies had low dissolved salt, nutrient, and fecal coliform concentrations and high dissolved oxygen levels. Waterbodies within the urban region (> 28% urban land cover within the sub-watershed) of the parish had significantly greater dissolved salt, nutrient, and fecal coliform concentrations and decreased dissolved oxygen concentrations. Specifically, nutrient and fecal coliform concentrations increased as streams flowed through urban areas. The specific conductance, fecal coliform counts, concentrations of sulfate, HCO3-C, sodium, and nutrients (NO3-N, NO2-N, NH4-N, and PO4-P), and the ratios of Na:Cl, Cl:Br, and SO4:Cl were shown to be the parameters most indicative of urban impacts. Many of the geochemical parameters correlated significantly with each other, particularly within the urban streams (the streams with the greatest concentrations). While fecal coliform counts were high within the urban streams, programs to address malfunctioning wastewater treatment plants (WWTP) appear to be working, with fecal coliform counts declining and dissolved oxygen levels rising during the course of the data collection. In contrast, sites undergoing rapid development showed an increase in turbidity levels and a decrease on dissolved oxygen levels (both going from healthy to unhealthy levels) during the 18-month course of the data collection. By understanding the impacts of urbanization on streams of the Gulf Coast, local and regional municipalities may be able to reduce the impacts in already urbanized areas or mitigate the impacts at the outset of development.
7

Water quality and sanitation in rural Moldova / Vattenkvalitet och sanitet på Moldaviens landsbygd

Hugosson, Hanna, Larnholt, Katja January 2010 (has links)
<p>Because of the impact on human health and sustainable livelihood, the topic of drinking water and sanitation facilities is becoming a seriously discussed issue among international organizations as well as developing agencies in industrialized countries. The importance of water and sanitation management initialized this master thesis.</p><p> </p><p>The aim of the project is to do an assessment of the drinking water quality as well as the sanitation situation in the village Condrita in the Republic of Moldova. This was done by studying the existing water and sanitation facilities, sampling the water, evaluating the reason for the poor water quality and mapping the current situation using ArcGIS. Furthermore, technologies for improving the drinking water and sanitation facilities are suggested.</p><p> </p><p>The work was carried out by doing a literature study on how water sources and sanitation facilities should be constructed in order to ensure people’s health and to meet their needs. Geographic coordinates and water samples were collected from twenty-two public wells and springs. Interviews on the water situation and sanitation facilities were performed. Furthermore, water samples were analysed with respect to nitrate, turbidity, electrical conductivity and coliform bacteria amongst others. Pesticide contamination was also taken into consideration when one of the wells was analysed. Water sources were classified as improved or unimproved according to definitions by WHOSIS. Moreover, the DRASTIC vulnerability model was used to evaluate the groundwater susceptibility to contaminants.</p><p> </p><p>In general, the water quality in the study area was poor and measured values of the analyzed parameters exceeded international or Moldovan standards for nitrate, hardness, electrical conductivity and total coliform bacteria. Four wells were contaminated with <em>E. coli</em> bacteria. Furthermore, turbidity measurements exceeded Moldovan standards in seven out of twenty-two water sources. No pesticide contamination was detected. Sampled water from the densely populated parts of the village as well as unimproved water sources proved to be of poorer quality. Map results showed that a majority of the groundwater within the study area was subject to a moderate or high risk of becoming contaminated. The current sanitation situation is that most families use simple pit latrines, which are placed far away from the dwelling-houses. Digging a new toilet when the existing one is full is a common practice in Condrita. Hand-washing facilities are seldom placed in proximity to the toilets.</p><p> </p><p>Pit latrines are believed to be the most important source of groundwater contamination in the study area. Other sources are agricultural activities and poor practice when abstracting water from the wells. A feasible solution to improve both the drinking water quality and the sanitation situation would be to install ecosan toilets. Improvements of the well’s features that are suggested include construction of an apron slab as well as proper lids for covering the well.</p>
8

Bacterial total maximum daily load (TMDL): development and evaluation of a new classification scheme for impaired waterbodies of Texas

Paul, Sabu 17 February 2005 (has links)
Under the Clean Water Act (CWA) program the Texas Commission on Environmental Quality (TCEQ) listed 110 stream segments with pathogenic bacteria impairment in 2000. The current study was conducted to characterize the watersheds associated with the impaired waterbodies. The main characteristics considered for the classification of waterbodies were designated use of the waterbody, land use distribution, density of stream network, average distance of a land of a particular use to the closest stream, household population, density of on-site sewage facilities (OSSF), bacterial loading due to the presence of different types of farm animals and wildlife, and average climatic conditions. The availability of observed in-stream fecal coliform bacteria concentration data was evaluated to obtain subgroups of data-rich and data-poor watersheds within a group. The climatic data and observed in-stream fecal coliform bacteria concentrations were analyzed to find out seasonal variability of the water quality. The watershed characteristics were analyzed using the multivariate statistical analysis techniques such as factor analysis/principal component analysis, cluster analysis, and discriminant analysis. Six groups of watersheds were formed as result of the statistical analysis. The main factors that differentiate the clusters were found to be bacterial contribution from farm animals and wildlife, density of OSSF, density of households connected to public sewers, and the land use distribution. Two watersheds were selected each from two groups of watersheds. Hydrological Simulation Program-FORTRAN (HSPF) model was calibrated for one watershed within each group and tested for the other watershed in the same group to study the similarity in the parameter sets due to the similarity in watershed characteristics. The study showed that the watersheds within a given cluster formed during the multivariate statistical analysis showed similar watershed characteristics and yielded similar model results for similar model input parameters. The effect of parameter uncertainty on the in-stream bacterial concentration predictions by HSPF was evaluated for the watershed of Salado Creek, in Bexar County. The parameters that control the HSPF model hydrology contributed the most variance in the in-stream fecal coliform bacterial concentrations corresponding to a simulation period between 1 January 1995 and 31 December 2000.
9

Water quality and sanitation in rural Moldova / Vattenkvalitet och sanitet på Moldaviens landsbygd

Hugosson, Hanna, Larnholt, Katja January 2010 (has links)
Because of the impact on human health and sustainable livelihood, the topic of drinking water and sanitation facilities is becoming a seriously discussed issue among international organizations as well as developing agencies in industrialized countries. The importance of water and sanitation management initialized this master thesis.   The aim of the project is to do an assessment of the drinking water quality as well as the sanitation situation in the village Condrita in the Republic of Moldova. This was done by studying the existing water and sanitation facilities, sampling the water, evaluating the reason for the poor water quality and mapping the current situation using ArcGIS. Furthermore, technologies for improving the drinking water and sanitation facilities are suggested.   The work was carried out by doing a literature study on how water sources and sanitation facilities should be constructed in order to ensure people’s health and to meet their needs. Geographic coordinates and water samples were collected from twenty-two public wells and springs. Interviews on the water situation and sanitation facilities were performed. Furthermore, water samples were analysed with respect to nitrate, turbidity, electrical conductivity and coliform bacteria amongst others. Pesticide contamination was also taken into consideration when one of the wells was analysed. Water sources were classified as improved or unimproved according to definitions by WHOSIS. Moreover, the DRASTIC vulnerability model was used to evaluate the groundwater susceptibility to contaminants.   In general, the water quality in the study area was poor and measured values of the analyzed parameters exceeded international or Moldovan standards for nitrate, hardness, electrical conductivity and total coliform bacteria. Four wells were contaminated with E. coli bacteria. Furthermore, turbidity measurements exceeded Moldovan standards in seven out of twenty-two water sources. No pesticide contamination was detected. Sampled water from the densely populated parts of the village as well as unimproved water sources proved to be of poorer quality. Map results showed that a majority of the groundwater within the study area was subject to a moderate or high risk of becoming contaminated. The current sanitation situation is that most families use simple pit latrines, which are placed far away from the dwelling-houses. Digging a new toilet when the existing one is full is a common practice in Condrita. Hand-washing facilities are seldom placed in proximity to the toilets.   Pit latrines are believed to be the most important source of groundwater contamination in the study area. Other sources are agricultural activities and poor practice when abstracting water from the wells. A feasible solution to improve both the drinking water quality and the sanitation situation would be to install ecosan toilets. Improvements of the well’s features that are suggested include construction of an apron slab as well as proper lids for covering the well.
10

Bacterial total maximum daily load (TMDL): development and evaluation of a new classification scheme for impaired waterbodies of Texas

Paul, Sabu 17 February 2005 (has links)
Under the Clean Water Act (CWA) program the Texas Commission on Environmental Quality (TCEQ) listed 110 stream segments with pathogenic bacteria impairment in 2000. The current study was conducted to characterize the watersheds associated with the impaired waterbodies. The main characteristics considered for the classification of waterbodies were designated use of the waterbody, land use distribution, density of stream network, average distance of a land of a particular use to the closest stream, household population, density of on-site sewage facilities (OSSF), bacterial loading due to the presence of different types of farm animals and wildlife, and average climatic conditions. The availability of observed in-stream fecal coliform bacteria concentration data was evaluated to obtain subgroups of data-rich and data-poor watersheds within a group. The climatic data and observed in-stream fecal coliform bacteria concentrations were analyzed to find out seasonal variability of the water quality. The watershed characteristics were analyzed using the multivariate statistical analysis techniques such as factor analysis/principal component analysis, cluster analysis, and discriminant analysis. Six groups of watersheds were formed as result of the statistical analysis. The main factors that differentiate the clusters were found to be bacterial contribution from farm animals and wildlife, density of OSSF, density of households connected to public sewers, and the land use distribution. Two watersheds were selected each from two groups of watersheds. Hydrological Simulation Program-FORTRAN (HSPF) model was calibrated for one watershed within each group and tested for the other watershed in the same group to study the similarity in the parameter sets due to the similarity in watershed characteristics. The study showed that the watersheds within a given cluster formed during the multivariate statistical analysis showed similar watershed characteristics and yielded similar model results for similar model input parameters. The effect of parameter uncertainty on the in-stream bacterial concentration predictions by HSPF was evaluated for the watershed of Salado Creek, in Bexar County. The parameters that control the HSPF model hydrology contributed the most variance in the in-stream fecal coliform bacterial concentrations corresponding to a simulation period between 1 January 1995 and 31 December 2000.

Page generated in 0.0457 seconds