Spelling suggestions: "subject:"collagen -- 3research"" "subject:"collagen -- 1research""
1 |
The regulation of allergic airway disease by type V collagen-induced toleranceLott, Jeremy M. 11 December 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Rationale: Tissue remodeling and complement activation are asthma hallmarks. Type V collagen [col(V)], a cryptic antigen, becomes exposed during lung remodeling. IL-17 is key to anti-col(V) immunity, and regulates complement activation. We have reported that col(V)-induced tolerance down regulates IL-17 and prevents immune-mediated lung diseases.
Objectives: Determine a role for anti-col(V) immunity in asthma.
Methods: Serum anti-col(V) antibodies were measured in asthma patients, and immunohistochemistry utilized to detect interstitial col(V) in fatal asthma. Balb/c mice were tolerized with col(V) prior to sensitization with ovalbumin (OVA), and subsequent OVA intranasal challenge. Airway hyper-responsiveness (AHR) to methacholine was measured; and RT-PCR utilized to determine local Il17 transcripts. Bronchoalveolar lavage levels of C3a¸ C5a and OVA-specific IgE were measured; and immunohistochemistry utilized to detect expression of complement regulatory proteins, expression, CD46/Crry and CD55, in lung tissue.
Results: Compared to normal subjects, anti-col(V) antibodies were increased in asthmatics; and interstitial col(V) was over expressed in fatal asthma. OVA-induced AHR up regulated anti-col(V) antibodies systemically, and increased OVA-specific IgE and C3a in BAL, and parenchymal Il17 transcripts. Col(V)-induced tolerance abrogated AHR, down regulated OVA-induced T cell proliferation, as well as total and OVA-specific IgE, C3a, IL-17 expression and tracheal smooth muscle contraction. Crry/CD46 and CD55, key to preventing complement activation, were down regulated on goblet cells in murine allergic airway disease.
Conclusions: Anti-col(V) immunity correlates with asthma pathogenesis, and col(V)-induced tolerance may be a novel therapeutic for asthma. Decreased expression of Crry/CD46 and CD55 on goblet cells may in part account for complement activation in asthma.
|
2 |
Biomechanical and morphological characterization of common iliac vein remodeling: Effects of venous reflux and hypertensionBrass, Margaret Mary January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The passive properties of the venous wall are important in the development of venous pathology. Increase in venous pressure due to retrograde flow (reflux) and obstruction of venous flow by intrinsic and extrinsic means are the two possible mechanisms for venous hypertension. Reflux is the prevailing theory in the etiology of venous insufficiency. The objective of this thesis is to quantify the passive biomechanical response and structural remodeling of veins subjected to chronic venous reflux and hypertension. To investigate the effects of venous reflux on venous mechanics, the tricuspid valve was injured chronically in canines by disrupting the chordae tendineae. The conventional inflation-extension protocol in conjunction with intravascular ultrasound (IVUS) was utilized to investigate the passive biomechanical response of both control common iliac veins (from 9 dogs) and common iliac veins subjected to chronic venous reflux and hypertension (from 9 dogs). The change in thickness and constituent composition as a result of chronic venous reflux and hypertension was quantified using multiphoton microscopy (MPM) and histological evaluation. Biomechanical results indicate that the veins stiffened and became less compliant when exposed to eight weeks of chronic venous reflux and hypertension. The mechanical stiffening was found to be a result of a significant increase in wall thickness (p < 0.05) and a significant increase in the collagen to elastin ratio (p < 0.05). After eight weeks of chronic reflux, the circumferential Cauchy stress significantly reduced (p < 0.05) due to wall thickening, but was not restored to control levels. This provided a useful model for development and further analysis of chronic venous insufficiency and assessment of possible intervention strategies.
|
Page generated in 0.0404 seconds