Spelling suggestions: "subject:"collider phenomenology"" "subject:"collider henomenology""
1 |
A two-Higgs-doublet model : from twisted theory to LHC phenomenologyHerquet, Michel 12 September 2008 (has links)
At the dawn of the Large Hadron Collider era, the Brout-Englert-Higgs mechanism remains the most appealing theoretical explanation of the electroweak symmetry breaking, despite the fact that the associated fundamental scalar boson has escaped any direct detection attempt. In this thesis, we consider a particular extension of the minimal Brout-Englert-Higgs scalar sector implemented in the Standard Model of strong and electroweak interactions. This extension, which is a specific, "twisted", realisation of the generic two-Higgs-doublet model, is motivated by a relative phase in the definition of the phenomenologically successful CP and custodial symmetries. Considering extensively various theoretical, indirect and direct constraints, this model appears as a viable alternative to more conventional scenarios like supersymmetric models, and gives grounds to largely unexplored possibilities of exotic scalar signatures at present and future collider experiments.
|
2 |
Hidden Higgses and Dark Matter at Current and Future CollidersPyarelal, Adarsh, Pyarelal, Adarsh January 2017 (has links)
Despite its indisputable successes, the Standard Model of particle physics (SM) is widely considered to be an effective low-energy approximation to an underlying theory that describes physics at higher energy scales. While there are many candidates for such a theory, nearly all of them predict the existence of additional particles beyond those of the Standard Model. In this work, we present three analyses aimed at discovering new particles at current and future particle colliders.
The first two analyses are designed to probe extended scalar sectors, which often arise in theories beyond the Standard Model (BSM). The structure of these extended scalar sectors can be described by a physically well-motivated class of models, known collectively as Two- Higgs Doublet Models (2HDMs). The scalar mass spectrum of 2HDMs is comprised of two CP-even states h and H, a CP-odd state A, and a pair of charged states H± . Traditional searches for these states at particle colliders focus on finding them via their decays to SM particles. However, there are compelling scenarios in which these heavy scalars decay through exotic modes to non-SM final states. In certain regions of parameter space, these exotic modes can even dominate the conven- tional decay modes to SM final states, and thus provide a complementary avenue for discovering new Higgs bosons.
The first analysis presented aims to discover charged Higgs bosons H± via top decay at the LHC. We find that the exotic decay modes outperform the conventional decay modes for regions of parameter space with low values of the 2HDM parameter tan β.
The second analysis aims to systematically cover all the exotic decay scenarios that are consistent with theoretical and experimental con- straints, at both the 14 TeV LHC and a future 100 TeV hadron collider. We find that the preliminary results are promising - we are able to ex- clude a large swathe of 2HDM parameter space, up to scalar masses of 3.5 TeV, for a wide range of values of tan β, at a 100 TeV collider.
In addition to these two analyses, we also present a third, aimed at discovering pair produced higgsinos that decay to binos at a 100 TeV collider. Higgsinos and binos are new fermion states that arise in the Minimal Supersymmetric Standard Model (MSSM). This heavily- studied model is the minimal phenomenologically viable incorporation of supersymmetry - a symmetry that connects fermions and bosons - into the Standard Model. In the scenario we consider, the bino is the lightest supersymmetric partner, which makes it a good candidate for dark matter. Using razor variables and boosted decision trees, we are able to exclude Higgsinos up to 1.8 TeV for binos up to 1.3 TeV.
|
3 |
A two-Higgs-doublet model : from twisted theory to LHC phenomenologyHerquet, Michel 12 September 2008 (has links)
At the dawn of the Large Hadron Collider era, the Brout-Englert-Higgs mechanism remains the most appealing theoretical explanation of the electroweak symmetry breaking, despite the fact that the associated fundamental scalar boson has escaped any direct detection attempt. In this thesis, we consider a particular extension of the minimal Brout-Englert-Higgs scalar sector implemented in the Standard Model of strong and electroweak interactions. This extension, which is a specific, "twisted", realisation of the generic two-Higgs-doublet model, is motivated by a relative phase in the definition of the phenomenologically successful CP and custodial symmetries. Considering extensively various theoretical, indirect and direct constraints, this model appears as a viable alternative to more conventional scenarios like supersymmetric models, and gives grounds to largely unexplored possibilities of exotic scalar signatures at present and future collider experiments.
|
4 |
Collider and Cosmological Phenomenology of Yukawa Unified SUSY GUTsBryant, Brandon Charles 28 December 2016 (has links)
No description available.
|
5 |
Higher order QCD corrections to diboson production at hadron collidersRontsch, Raoul Horst January 2012 (has links)
Hadronic collider experiments have played a major role in particle physics phenomenology over the last few decades. Data recorded at the Tevatron at Fermilab is still of interest, and its successor, the Large Hadron Collider (LHC) at CERN, has recently announced the discovery of a particle consistent with the Standard Model Higgs boson. Hadronic colliders look set to guide the field for the next fifteen years or more, with the discovery of more particles anticipated. The discovery and detailed study of new particles relies crucially on the availability of high-precision theoretical predictions for both the signal and background processes. This requires observables to be calculated to next-to-leading order (NLO) in perturbative quantum chromodynamics (QCD). Many hadroproduction processes of interest contain multiple particles in the final state. Until recently, this caused a bottleneck in NLO QCD calculations, due to the difficulty in calculating one-loop corrections to processes involving three or more final state particles. Spectacular developments in on-shell methods over the last six years have made these calculations feasible, allowing highly accurate predictions for final state observables at the Tevatron and LHC. A particular realisation of on-shell methods, generalised unitarity, is used to compute the NLO QCD cross-sections and distributions for two processes: the hadroproduction of W<sup>+</sup> W<sup>-</sup>jj, and the hadroproduction of W<sup>+</sup> W<sup>-</sup>jj. The NLO corrections to both processes serve to reduce the scale dependence of the results significantly, while having a moderate effect on the central scale choice cross-sections, and leaving the shapes of the kinematic distributions mostly unchanged. Additionally, the gluon fusion contribution to the next-to-next-to-leading order (NNLO) QCD corrections to W<sup>+</sup> W<sup>-</sup>j productions are studied. These contributions are found to be highly depen- dent on the kinematic cuts used. For cuts used in Higgs searches, the gluon fusion effect can be as large as the NLO scale uncertainty, and should not be neglected. All of the higher-order QCD corrections increase the accuracy and reliability of the theoretical predictions at hadronic colliders.
|
6 |
Phenomenology of new physics beyond the Standard Model : signals of supersymmetry with displaced vertices and an extended Higgs sector at collidersCottin Buracchio, Giovanna Francesca January 2017 (has links)
Our current understanding of matter and its interactions is summarised in the Standard Model (SM) of particle physics. Many experiments have tested the predictions of the SM with great success, but others have brought our ignorance into focus by showing us there are new phenomena that we can not describe within the framework of the SM. These include the experimental observations of neutrino masses and dark matter, which confirms there must be new physics. What this new physics may look like at colliders motivates the original work in this thesis, which comprises three studies: the prospects of future electron-positron colliders in testing a model with an extended Higgs sector with a scalar triplet, doublet and singlet; the discovery potential at the Large Hadron Collider (LHC) of a non-minimal Supersymmetric model via conventional sparticle searches and via searches for displaced vertices; and the experimental search for long-lived massive particles via a displaced vertex signature using data of proton-proton collisions collected at a collider center of mass energy of 8 TeV in 2012 by the ATLAS detector operating at the LHC.
|
7 |
Phenomenology at a future 100 TeV hadron colliderFerrarese, Piero 03 November 2017 (has links)
No description available.
|
8 |
Prospecting for New Physics in the Higgs and Flavor SectorsBishara, Fady 12 October 2015 (has links)
No description available.
|
9 |
Aspects of QCD uncertainties and fast QCD predictions for high-energy collider experimentsBothmann, Enrico 03 November 2016 (has links)
In dieser Arbeit adressieren wir die Schwierigkeit, Präzisionsvorhersagen mit dem kompletten Satz theoretischer Unsicherheiten in der perturbativen Quantenchromodynamik im Rahmen von Monte-Carlo-Simulationen zu treffen, angesichts der zunehmenden Komplexität der dazu nötigen Berechnungen. Die Anforderungen an die Rechenleistung können so groß sein, dass nicht in jeder Anwendung die bestmögliche Präzision erzielt wird.
Wir präsentieren eine Reweighting-Methode für den Monte-Carlo-Ereignisgenerator SHERPA. Diese erstellt Variationen der nominellen Vorhersage mit vergleichsweise geringem zusätzlichen Zeitaufwand. Die Methode ist kompatibel mit aktuellen Multijet-Berechnungen nächsthöherer Ordnung, die mit Korrekturen von allen Ordnungen durch einen Partonschauer versehen sind.
Zusätzlich diskutieren wir neue Entwicklungen für einen weiteren Reweighting-Ansatz, der auf QCD-Interpolationsgittern beruht. Diese ermöglichen noch schnellere Variationen für Berechnungen fester Ordnung. Solche Gitter können für Monte-Carlo-Simulationen automatisiert erstellt werden mithilfe von Interfaces wie MCgrid. Unsere Verbesserungen für MCgrid ermöglichen die Erstellung vielseitigerer Gitter, die eine größere Klasse von Berechnungen, Gitter-Implementierungen und Skalenvariationen unterstützen. Darüber hinaus diskutieren wir, auf welche Weise solche Gitter für die Unterstützung von Resummationseffekten erweitert werden müssten.
Neben dem Reweighting studieren wir noch die Verwendung von Extrapolationsmethoden für die Vorhersage von Jet-Raten hoher Multiplizitäten, welche an zukünftigen Hochenergiebeschleunigern allgegenwärtig sein werden. Diese Methoden basieren auf dem Skalierungsverhalten der Jet-Raten. Eingebettet ist diese Studie in eine allgemeinere Diskussion der zu erwartenden Jet-Aktivität an einem Proton-Proton-Beschleuniger mit einer Schwerpunktsenergie von 100 TeV.
|
10 |
Phenomenology of models with new fermions and dark matter candidatesVargas, Daniel Alberto Camargo January 2018 (has links)
Orientador: Prof. Dr. Alex Gomes Dias / Coorientador: Prf. Dr. Alexandre Alves / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, Santo André, 2018.
|
Page generated in 0.0699 seconds