• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 26
  • 9
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 181
  • 181
  • 39
  • 37
  • 23
  • 20
  • 15
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The amount of information in the absolute judgment of Munsell hues /

Conover, Donald William January 1955 (has links)
No description available.
92

Evaluation of the Moreland color match as an indicator of the retinal pathology /

Chang, Yin January 1986 (has links)
No description available.
93

A model for simulation of color vision deficiency and a color contrast enhancement technique for dichromats / Um modelo para simulação das deˇciências na percepção de cores e uma técnica de aumento do contraste de cores para dicromátas

Machado, Gustavo Mello January 2010 (has links)
As Deficiências na Percepção de Cores (DPC) afetam aproximadamente 200 milhões de pessoas em todo o mundo, comprometendo suas habilidades para efetivamente realizar tarefas relacionadas com cores e com visualização. Isto impacta significantemente os âmbitos pessoais e profissionais de suas vidas. Este trabalho apresenta um modelo baseado na fisiologia para simulação da percepção de cores. Além de modelar visão de cores normal, ele também compreende os tipos mais predominantes de deficiências na visão de cores (i.e., protanopia, deuteranopia, protanomalia e deuteranomalia), cujas causas são hereditárias. Juntos estes representam aproximadamente 99.96% de todos os casos de DPC. Para modelar a percepção de cores da visão humana, este modelo é baseado na teoria dos estágios e é derivado de dados reportados em estudos eletrofisiológicos. Ele é o primeiro modelo a consistentemente tratar visão de cores normal, tricromacia anômala e dicromacia de modo unificados. Seus resultados foram validados por avaliações experimentais envolvendo grupos de indivíduos com deficiência na percepção de cores e outros com visão de cores normal. Além disso, ele pode proporcionar a melhor compreensão e um feedback sobre como aperfeiçoar as experiências de visualização por indivíduos com DPC. Ele também proporciona um framework para se testar hipóteses sobre alguns aspectos acerca das células fotoreceptoras na retina de indivíduos com deficiência na percepção de cores. Este trabalho também apresenta uma técnica automática de recoloração de imagens que visa realçar o contraste de cores para indivíduos dicromatas com custo computacional variando linearmente com o número de pixels. O algoritmo proposto pode ser eficientemente implementado em GPUs, e para imagens com tamanhos tipicos ele apresenta performance de até duas ordens de magnitude mais rápida do que as técnicas estado da arte atuais. Ao contrário das abordagens anteriores, a técnica proposta preserva coerência temporal e, portanto, é adequado para recoloração de vídeos. Este trabalho demonstra a efetividade da técnica proposta ao integrá-la a um sistema de visualização e apresentando, pela primeira vez, cenas de visualização recoloridas para dicromatas em tempo-real e com alta qualidade. / Color vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualizationrelated tasks. This has a significant impact on their private and professional lives. This thesis presents a physiologically-based model for simulating color perception. Besides modeling normal color vision, it also accounts for the hereditary and most prevalent cases of color vision deficiency (i.e., protanopia, deuteranopia, protanomaly, and deuteranomaly), which together account for approximately 99.96% of all CVD cases. This model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. The proposed model was validated through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. This model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals. This thesis also presents an automatic image-recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. This approach can be efficiently implemented on GPUs, and for typical image sizes it is up to two orders of magnitude faster than the current state-of-the-art technique. Unlike previous approaches, the proposed technique preserves temporal coherence and, therefore, is suitable for video recoloring. This thesis demonstrates the effectiveness of the proposed technique by integrating it into a visualization system and showing, for the first time, real-time high-quality recolored visualizations for dichromats.
94

A model for simulation of color vision deficiency and a color contrast enhancement technique for dichromats / Um modelo para simulação das deˇciências na percepção de cores e uma técnica de aumento do contraste de cores para dicromátas

Machado, Gustavo Mello January 2010 (has links)
As Deficiências na Percepção de Cores (DPC) afetam aproximadamente 200 milhões de pessoas em todo o mundo, comprometendo suas habilidades para efetivamente realizar tarefas relacionadas com cores e com visualização. Isto impacta significantemente os âmbitos pessoais e profissionais de suas vidas. Este trabalho apresenta um modelo baseado na fisiologia para simulação da percepção de cores. Além de modelar visão de cores normal, ele também compreende os tipos mais predominantes de deficiências na visão de cores (i.e., protanopia, deuteranopia, protanomalia e deuteranomalia), cujas causas são hereditárias. Juntos estes representam aproximadamente 99.96% de todos os casos de DPC. Para modelar a percepção de cores da visão humana, este modelo é baseado na teoria dos estágios e é derivado de dados reportados em estudos eletrofisiológicos. Ele é o primeiro modelo a consistentemente tratar visão de cores normal, tricromacia anômala e dicromacia de modo unificados. Seus resultados foram validados por avaliações experimentais envolvendo grupos de indivíduos com deficiência na percepção de cores e outros com visão de cores normal. Além disso, ele pode proporcionar a melhor compreensão e um feedback sobre como aperfeiçoar as experiências de visualização por indivíduos com DPC. Ele também proporciona um framework para se testar hipóteses sobre alguns aspectos acerca das células fotoreceptoras na retina de indivíduos com deficiência na percepção de cores. Este trabalho também apresenta uma técnica automática de recoloração de imagens que visa realçar o contraste de cores para indivíduos dicromatas com custo computacional variando linearmente com o número de pixels. O algoritmo proposto pode ser eficientemente implementado em GPUs, e para imagens com tamanhos tipicos ele apresenta performance de até duas ordens de magnitude mais rápida do que as técnicas estado da arte atuais. Ao contrário das abordagens anteriores, a técnica proposta preserva coerência temporal e, portanto, é adequado para recoloração de vídeos. Este trabalho demonstra a efetividade da técnica proposta ao integrá-la a um sistema de visualização e apresentando, pela primeira vez, cenas de visualização recoloridas para dicromatas em tempo-real e com alta qualidade. / Color vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualizationrelated tasks. This has a significant impact on their private and professional lives. This thesis presents a physiologically-based model for simulating color perception. Besides modeling normal color vision, it also accounts for the hereditary and most prevalent cases of color vision deficiency (i.e., protanopia, deuteranopia, protanomaly, and deuteranomaly), which together account for approximately 99.96% of all CVD cases. This model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. The proposed model was validated through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. This model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals. This thesis also presents an automatic image-recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. This approach can be efficiently implemented on GPUs, and for typical image sizes it is up to two orders of magnitude faster than the current state-of-the-art technique. Unlike previous approaches, the proposed technique preserves temporal coherence and, therefore, is suitable for video recoloring. This thesis demonstrates the effectiveness of the proposed technique by integrating it into a visualization system and showing, for the first time, real-time high-quality recolored visualizations for dichromats.
95

A model for simulation of color vision deficiency and a color contrast enhancement technique for dichromats / Um modelo para simulação das deˇciências na percepção de cores e uma técnica de aumento do contraste de cores para dicromátas

Machado, Gustavo Mello January 2010 (has links)
As Deficiências na Percepção de Cores (DPC) afetam aproximadamente 200 milhões de pessoas em todo o mundo, comprometendo suas habilidades para efetivamente realizar tarefas relacionadas com cores e com visualização. Isto impacta significantemente os âmbitos pessoais e profissionais de suas vidas. Este trabalho apresenta um modelo baseado na fisiologia para simulação da percepção de cores. Além de modelar visão de cores normal, ele também compreende os tipos mais predominantes de deficiências na visão de cores (i.e., protanopia, deuteranopia, protanomalia e deuteranomalia), cujas causas são hereditárias. Juntos estes representam aproximadamente 99.96% de todos os casos de DPC. Para modelar a percepção de cores da visão humana, este modelo é baseado na teoria dos estágios e é derivado de dados reportados em estudos eletrofisiológicos. Ele é o primeiro modelo a consistentemente tratar visão de cores normal, tricromacia anômala e dicromacia de modo unificados. Seus resultados foram validados por avaliações experimentais envolvendo grupos de indivíduos com deficiência na percepção de cores e outros com visão de cores normal. Além disso, ele pode proporcionar a melhor compreensão e um feedback sobre como aperfeiçoar as experiências de visualização por indivíduos com DPC. Ele também proporciona um framework para se testar hipóteses sobre alguns aspectos acerca das células fotoreceptoras na retina de indivíduos com deficiência na percepção de cores. Este trabalho também apresenta uma técnica automática de recoloração de imagens que visa realçar o contraste de cores para indivíduos dicromatas com custo computacional variando linearmente com o número de pixels. O algoritmo proposto pode ser eficientemente implementado em GPUs, e para imagens com tamanhos tipicos ele apresenta performance de até duas ordens de magnitude mais rápida do que as técnicas estado da arte atuais. Ao contrário das abordagens anteriores, a técnica proposta preserva coerência temporal e, portanto, é adequado para recoloração de vídeos. Este trabalho demonstra a efetividade da técnica proposta ao integrá-la a um sistema de visualização e apresentando, pela primeira vez, cenas de visualização recoloridas para dicromatas em tempo-real e com alta qualidade. / Color vision deficiency (CVD) affects approximately 200 million people worldwide, compromising the ability of these individuals to effectively perform color and visualizationrelated tasks. This has a significant impact on their private and professional lives. This thesis presents a physiologically-based model for simulating color perception. Besides modeling normal color vision, it also accounts for the hereditary and most prevalent cases of color vision deficiency (i.e., protanopia, deuteranopia, protanomaly, and deuteranomaly), which together account for approximately 99.96% of all CVD cases. This model is based on the stage theory of human color vision and is derived from data reported in electrophysiological studies. It is the first model to consistently handle normal color vision, anomalous trichromacy, and dichromacy in a unified way. The proposed model was validated through an experimental evaluation involving groups of color vision deficient individuals and normal color vision ones. This model can provide insights and feedback on how to improve visualization experiences for individuals with CVD. It also provides a framework for testing hypotheses about some aspects of the retinal photoreceptors in color vision deficient individuals. This thesis also presents an automatic image-recoloring technique for enhancing color contrast for dichromats whose computational cost varies linearly with the number of input pixels. This approach can be efficiently implemented on GPUs, and for typical image sizes it is up to two orders of magnitude faster than the current state-of-the-art technique. Unlike previous approaches, the proposed technique preserves temporal coherence and, therefore, is suitable for video recoloring. This thesis demonstrates the effectiveness of the proposed technique by integrating it into a visualization system and showing, for the first time, real-time high-quality recolored visualizations for dichromats.
96

Maturation of the transient chromatic (L-M) visual evoked potential: insights from linear and nonlinear analysis.

Boon, Mei Ying, Optometry & Vision Science, Faculty of Science, UNSW January 2007 (has links)
Introduction: Psychophysical and electrophysiological techniques have shown that chromatic contrast sensitivity improves between infancy and adolescence. In adults, electrophysiological and psychophysical methods usually agree. However, in infants electrophysiological techniques may underestimate ability to see chromatic contrast (Suttle et al., 2002). It is not known if the discrepancy between electrophysiological and psychophysical methods continues during childhood nor whether the chromatic VEP can be used as an indicator of colour perception in children. Purpose: To investigate the transient L-M chromatic visual evoked potential and its ability to indicate perception (psychophysical thresholds) of chromatic stimuli in children and adults. In particular, to determine whether a discrepancy between VEP and psychophysical L-M thresholds exists during childhood and if so, to gain some understanding about the nature of the discrepancy. Methods: Transient chromatic VEPs were recorded in children (aged 4.5-13 years) and adults (aged 20-40 years). VEP thresholds were compared with psychophysical thresholds (within-subjects comparison). Because the VEPs of the children were less intra-individually repeatable in morphology than those of the adults, post-hoc objective analysis of the VEPs, linear (Fourier) and nonlinear dynamical (Grassberger and Procaccia's (1983) correlation dimension) analyses, was conducted. Results: VEP and psychophysical estimates of chromatic contrast thresholds agreed using a variety of methods in the adults. In the children, however, the objective methods of assessment (extrapolation from Fourier-derived amplitudes and the correlation dimension) were more accurate than the methods that employed subjective evaluations of VEP morphology. Conclusion: The L-M transient chromatic VEPs of both children (aged 4.5-13 years) and adults appear to contain chromatic information, even in the absence of repeatable VEP morphology and should therefore be able to indicate chromatic perception (psychophysical thresholds). However, the chromatic information may be present as a nonlinear dynamical signal, which may require objective methods (Fourier analysis, the correlation dimension) to reveal the chromatic signal. The greater intra-individual variability of VEP morphology in children compared to adults may reflect poorer precision when switching between cortical states in children's brains. Alternatively, interactions between the immature visual system of the children and their general EEG may occur. Children's VEPs should therefore be interpreted differently to adult VEPs.
97

Preserved striate cortex is not sufficient to support the McCollough effect : evidence from two patients with cerebral achromatopsia /

Mullin, Caitlin R. January 2008 (has links)
Thesis (M.A.)--York University, 2008. Graduate Programme in Higher Education. / Typescript. Includes bibliographical references (leaves 42-50). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:MR45962
98

Effects of light environments on the evolution of primate visual systems

Veilleux, Carrie Cecilia 14 November 2013 (has links)
Primate habitats differ dramatically in the intensity and spectral quality (color) of ambient light. However, little research has explored the effects of habitat variation in ambient light on primate and mammalian visual systems. An understanding of variation in nocturnal light environments is particularly lacking, considering the significance of nocturnality and vision in primate evolutionary hypotheses. In this dissertation, I explored effects of habitat variation in light environments on primate visual evolution in three studies. First, I examined how variation in ambient light intensity influenced visual morphology in 209 mammals. Second, I analyzed effects of variation in nocturnal light environments on color vision in nocturnal primates and mammals. For this second objective, I first identified factors influencing variation in nocturnal light environments within and between habitats in Madagascar and explored how nocturnal light spectral quality has influenced mammalian visual pigment spectral tuning. I then analyzed selection acting on the SWS1 opsin gene (coding for blue-sensitive cone visual pigments) between nocturnal lemurs from different habitat types to explore whether nocturnal light environments affect selection for dichromatic color vision. The results of all three studies suggest that habitat variation in light environments has had a significant influence on primate and mammalian visual evolution. In the first study, I found that day-active mammals from forested habitats exhibited larger relative cornea size compared to species from open habitats, reflecting an adaptation to increase visual sensitivity in diurnal forests. The results of the second study revealed that forest and woodland habitats share a yellow-green dominant nocturnal light environment and that nocturnal vertebrates exhibit visual pigments tuned to maximize photon absorption in these environments. Additionally, I observed a potential effect of diet on long-wavelength-sensitive cone spectral tuning among nocturnal mammals. In the third study I sequenced the SWS1 opsin gene in 106 nocturnal lemurs (19 species). Both population genetic and phylogenetic analyses identified clear signatures of differential selection on the gene by habitat type, suggesting that nocturnal light environments has influenced selection for nocturnal dichromacy in nocturnal lemurs. Finally, I discussed the implications of these results for nocturnal primate visual ecology and evolution. / text
99

Maturation of the transient chromatic (L-M) visual evoked potential: insights from linear and nonlinear analysis.

Boon, Mei Ying, Optometry & Vision Science, Faculty of Science, UNSW January 2007 (has links)
Introduction: Psychophysical and electrophysiological techniques have shown that chromatic contrast sensitivity improves between infancy and adolescence. In adults, electrophysiological and psychophysical methods usually agree. However, in infants electrophysiological techniques may underestimate ability to see chromatic contrast (Suttle et al., 2002). It is not known if the discrepancy between electrophysiological and psychophysical methods continues during childhood nor whether the chromatic VEP can be used as an indicator of colour perception in children. Purpose: To investigate the transient L-M chromatic visual evoked potential and its ability to indicate perception (psychophysical thresholds) of chromatic stimuli in children and adults. In particular, to determine whether a discrepancy between VEP and psychophysical L-M thresholds exists during childhood and if so, to gain some understanding about the nature of the discrepancy. Methods: Transient chromatic VEPs were recorded in children (aged 4.5-13 years) and adults (aged 20-40 years). VEP thresholds were compared with psychophysical thresholds (within-subjects comparison). Because the VEPs of the children were less intra-individually repeatable in morphology than those of the adults, post-hoc objective analysis of the VEPs, linear (Fourier) and nonlinear dynamical (Grassberger and Procaccia's (1983) correlation dimension) analyses, was conducted. Results: VEP and psychophysical estimates of chromatic contrast thresholds agreed using a variety of methods in the adults. In the children, however, the objective methods of assessment (extrapolation from Fourier-derived amplitudes and the correlation dimension) were more accurate than the methods that employed subjective evaluations of VEP morphology. Conclusion: The L-M transient chromatic VEPs of both children (aged 4.5-13 years) and adults appear to contain chromatic information, even in the absence of repeatable VEP morphology and should therefore be able to indicate chromatic perception (psychophysical thresholds). However, the chromatic information may be present as a nonlinear dynamical signal, which may require objective methods (Fourier analysis, the correlation dimension) to reveal the chromatic signal. The greater intra-individual variability of VEP morphology in children compared to adults may reflect poorer precision when switching between cortical states in children's brains. Alternatively, interactions between the immature visual system of the children and their general EEG may occur. Children's VEPs should therefore be interpreted differently to adult VEPs.
100

Color in scientific visualization : perception and image-based data display /

Zhang, Hongqin. January 2008 (has links)
Thesis (Ph.D.)--Rochester Institute of Technology, 2008. / Typescript. Includes bibliographical references (p. 196-204).

Page generated in 0.051 seconds