Spelling suggestions: "subject:"coloration acycliques"" "subject:"coloration cyclique""
1 |
Circular coloring and acyclic choosability of graphs / Coloration circulaire et coloration acyclique par listes de graphesRoussel, Nicolas 14 December 2009 (has links)
Dans cette thèse, nous nous intéressons à la coloration circulaire des graphes planaires. Des bornes supérieures ont été données pour des graphes avec degré maximum borné, avec girth, la longueur de son plus petit cycle, bornée, avec des cycles manquants, etc. Ici nous donnerons de nouvelles bornes pour les graphes avec degré moyen maximum borné. Nous étudions également la coloration totale et la coloration (d,1)-totale de plusieurs familles infinies de graphes. Nous décrivons le nouveau concept de coloration (d,1)-totale circulaire. Enfin, nous discutons les conditions nécessaires pour qu'un graphe planaire admette une coloration acyclique par listes de taille 4. / In this thesis, we study the circular coloring of planar graphs. Upper bounds have been given for graphs with bounded maximum degree, with bounded girth, that is the length of its smallest cycle, with missing cycles, and so on. It has also been studied for graphs with bounded maximum average degree. Here we give new upper bounds for that latter case. We also study the total coloring and ($d,1$)-total labeling of a few infinite families of graphs and describe the new concept of circular ($d,1$)-total labeling of graphs. In the last part, we will discuss conditions for a planar graph to be acyclically $4$-choosable.
|
2 |
Colorations de graphes sous contraintesHocquard, Hervé 05 December 2011 (has links) (PDF)
Dans cette thèse, nous nous intéressons à différentes notions de colorations sous contraintes. Nous nous intéressons plus spécialement à la coloration acyclique, à la coloration forte d'arêtes et à la coloration d'arêtes sommets adjacents distinguants.Dans le Chapitre 2, nous avons étudié la coloration acyclique. Tout d'abord nous avons cherché à borner le nombre chromatique acyclique pour la classe des graphes de degré maximum borné. Ensuite nous nous sommes attardés sur la coloration acyclique par listes. La notion de coloration acyclique par liste des graphes planaires a été introduite par Borodin, Fon-Der Flaass, Kostochka, Raspaud et Sopena. Ils ont conjecturé que tout graphe planaire est acycliquement 5-liste coloriable. De notre côté, nous avons proposé des conditions suffisantes de 3-liste coloration acyclique des graphes planaires. Dans le Chapitre 3, nous avons étudié la coloration forte d'arêtes des graphes subcubiques en majorant l'indice chromatique fort en fonction du degré moyen maximum. Nous nous sommes également intéressés à la coloration forte d'arêtes des graphes subcubiques sans cycles de longueurs données et nous avons également obtenu une majoration optimale de l'indice chromatique fort pour la famille des graphes planaires extérieurs. Nous avons aussi présenté différents résultats de complexité pour la classe des graphes planaires subcubiques. Enfin, au Chapitre 4, nous avons abordé la coloration d'arêtes sommets adjacents distinguants en déterminant les majorations de l'indice avd-chromatique en fonction du degré moyen maximum. Notre travail s'inscrit dans la continuité de celui effectué par Wang et Wang en 2010. Plus précisément, nous nous sommes focalisés sur la famille des graphes de degré maximum au moins 5.
|
3 |
Cycles in graphs and arc colorings in digraphs / Cycles des graphes et colorations d’arcs des digraphesHe, Weihua 28 November 2014 (has links)
Dans cette thèse nous étudions quatre problèmes de théorie des graphes. En particulier,Nous étudions le problème du cycle hamiltonien dans les line graphes, et aussi nous prouvons l’existence de cycles hamiltoniens dans certains sous graphes couvrants d’un line graphe. Notre résultat principal est: Si L(G) est hamiltonien, alors SL(G) est hamiltonien. Grâce à ce résultat nous proposons une conjecture équivalente à des conjectures célèbres. Et nous obtenons deux résultats sur les cycles hamiltoniens disjoints dans les line graphes.Nous considérons alors la bipancyclicité résistante aux pannes des graphes de Cayley engendrés par transposition d’arbres. Nous prouvons que de tels graphes de Cayley excepté le “star graph” ont une bipancyclicité (n − 3)-arête résistante aux pannes.Ensuite nous introduisons la coloration des arcs d’un digraphe sommet distinguant. Nous étudions la relation entre cette notion et la coloration d’arêtes sommet distinguant dans les graphes non orientés. Nous obtenons quelques résultats sur le nombre arc chromatique des graphes orientés (semi-)sommet-distinguant et proposons une conjecture sur ce paramètre. Pour vérifier cette conjecture nous étudions la coloration des arcs d’un digraphe sommet distinguant des graphes orientés réguliers.Finalement nous introduisons la coloration acyclique des arcs d’un graphe orienté. Nous calculons le nombre chromatique acyclique des arcs de quelques familles de graphes orientés et proposons une conjecture sur ce paramètre. Nous considérons les graphes orientés de grande maille et utilisons le Lemme Local de Lovász; d’autre part nous considérons les graphes orientés réguliers aléatoires. Nous prouvons que ces deux classes de graphes vérifient la conjecture. / In this thesis, we study four problems in graph theory, the Hamiltonian cycle problem in line graphs, the edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition trees, the vertex-distinguishing arc colorings in digraph- s and the acyclic arc coloring in digraphs. The first two problems are the classic problem on the cycles in graphs. And the other two arc coloring problems are related to the modern graph theory, in which we use some probabilistic methods. In particular,We first study the Hamiltonian cycle problem in line graphs and find the Hamiltonian cycles in some spanning subgraphs of line graphs SL(G). We prove that: if L(G) is Hamiltonian, then SL(G) is Hamiltonian. Due to this, we propose a conjecture, which is equivalent to some well-known conjectures. And we get two results about the edge-disjoint Hamiltonian cycles in line graphs.Then, we consider the edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition trees. And we prove that the Cayley graph generated by transposition tree is (n − 3)-edge-fault-tolerant bipancyclic if it is not a star graph.Later, we introduce the vertex-distinguishing arc coloring in digraphs. We study the relationship between the vertex-distinguishing edge coloring in undirected graphs and the vertex-distinguishing arc coloring in digraphs. And we get some results on the (semi-) vertex-distinguishing arc chromatic number for digraphs and also propose a conjecture about it. To verify the conjecture we study the vertex-distinguishing arc coloring for regular digraphs.Finally, we introduce the acyclic arc coloring in digraphs. We calculate the acyclic arc chromatic number for some digraph families and propose a conjecture on the acyclic arc chromatic number. Then we consider the digraphs with high girth by using the Lovász Local Lemma and we also consider the random regular digraphs. And the results of the digraphs with high girth and the random regular digraphs verify the conjecture.
|
4 |
Vertex coloring of graphs via the discharging method / Coloration des sommets des graphes par la méthode de déchargementChen, Min 17 November 2010 (has links)
Dans cette thèse, nous nous intéressons à differentes colorations des sommets d’un graphe et aux homomorphismes de graphes. Nous nous intéressons plus spécialement aux graphes planaires et aux graphes peu denses. Nous considérons la coloration propre des sommets, la coloration acyclique, la coloration étoilée, lak-forêt-coloration, la coloration fractionnaire et la version par liste de la plupart de ces concepts.Dans le Chapitre 2, nous cherchons des conditions suffisantes de 3-liste colorabilité des graphes planaires. Ces conditions sont exprimées en termes de sous-graphes interdits et nos résultats impliquent plusieurs résultats connus.La notion de la coloration acyclique par liste des graphes planaires a été introduite par Borodin, Fon-Der Flaass, Kostochka, Raspaud, et Sopena. Ils ont conjecturé que tout graphe planaire est acycliquement 5-liste coloriable. Dans le Chapitre 3, on obtient des conditions suffisantes pour qu’un graphe planaire admette une k-coloration acyclique par liste avec k 2 f3; 4; 5g.Dans le Chapitre 4, nous montrons que tout graphe subcubique est 6-étoilé coloriable.D’autre part, Fertin, Raspaud et Reed ont montré que le graphe de Wagner ne peut pas être 5-étoilé-coloriable. Ce fait implique que notre résultat est optimal. De plus, nous obtenons des nouvelles bornes supérieures sur la choisissabilité étoilé d’un graphe planaire subcubique de maille donnée.Une k-forêt-coloration d’un graphe G est une application ¼ de l’ensemble des sommets V (G) de G dans l’ensemble de couleurs 1; 2; ¢ ¢ ¢ ; k telle que chaque classede couleur induit une forêt. Le sommet-arboricité de G est le plus petit entier ktel que G a k-forêt-coloration. Dans le Chapitre 5, nous prouvons une conjecture de Raspaud et Wang affirmant que tout graphe planaire sans triangles intersectants admet une sommet-arboricité au plus 2.Enfin, au Chapitre 6, nous nous concentrons sur le problème d’homomorphisme des graphes peu denses dans le graphe de Petersen. Plus précisément, nous prouvons que tout graphe sans triangles ayant un degré moyen maximum moins de 5=2 admet un homomorphisme dans le graphe de Petersen. En outre, nous montrons que la borne sur le degré moyen maximum est la meilleure possible. / In this thesis, we are interested in various vertex coloring and homomorphism problems of graphs with special emphasis on planar graphs and sparsegraphs. We consider proper vertex coloring, acyclic coloring, star coloring, forestcoloring, fractional coloring and the list version of most of these concepts.In Chapter 2, we consider the problem of finding sufficient conditions for a planargraph to be 3-choosable. These conditions are expressed in terms of forbiddensubgraphs and our results extend several known results.The notion of acyclic list coloring of planar graphs was introduced by Borodin,Fon-Der Flaass, Kostochka, Raspaud, and Sopena. They conjectured that everyplanar graph is acyclically 5-choosable. In Chapter 3, we obtain some sufficientconditions for planar graphs to be acyclically k-choosable with k 2 f3; 4; 5g.In Chapter 4, we prove that every subcubic graph is 6-star-colorable. On theother hand, Fertin, Raspaud and Reed showed that the Wagner graph cannot be5-star-colorable. This fact implies that our result is best possible. Moreover, weobtain new upper bounds on star choosability of planar subcubic graphs with givengirth.A k-forest-coloring of a graph G is a mapping ¼ from V (G) to the set f1; ¢ ¢ ¢ ; kgsuch that each color class induces a forest. The vertex-arboricity of G is the smallestinteger k such that G has a k-forest-coloring. In Chapter 5, we prove a conjecture ofRaspaud and Wang asserting that every planar graph without intersecting triangleshas vertex-arboricity at most 2.Finally, in Chapter 6, we focus on the homomorphism problems of sparse graphsto the Petersen graph. More precisely, we prove that every triangle-free graph withmaximum average degree less than 5=2 admits a homomorphism to the Petersengraph. Moreover, we show that the bound on the maximum average degree in ourresult is best possible.
|
5 |
Colorations de graphes sous contraintes / Graph coloring under constraintsHocquard, Hervé 05 December 2011 (has links)
Dans cette thèse, nous nous intéressons à différentes notions de colorations sous contraintes. Nous nous intéressons plus spécialement à la coloration acyclique, à la coloration forte d'arêtes et à la coloration d'arêtes sommets adjacents distinguants.Dans le Chapitre 2, nous avons étudié la coloration acyclique. Tout d'abord nous avons cherché à borner le nombre chromatique acyclique pour la classe des graphes de degré maximum borné. Ensuite nous nous sommes attardés sur la coloration acyclique par listes. La notion de coloration acyclique par liste des graphes planaires a été introduite par Borodin, Fon-Der Flaass, Kostochka, Raspaud et Sopena. Ils ont conjecturé que tout graphe planaire est acycliquement 5-liste coloriable. De notre côté, nous avons proposé des conditions suffisantes de 3-liste coloration acyclique des graphes planaires. Dans le Chapitre 3, nous avons étudié la coloration forte d'arêtes des graphes subcubiques en majorant l'indice chromatique fort en fonction du degré moyen maximum. Nous nous sommes également intéressés à la coloration forte d'arêtes des graphes subcubiques sans cycles de longueurs données et nous avons également obtenu une majoration optimale de l'indice chromatique fort pour la famille des graphes planaires extérieurs. Nous avons aussi présenté différents résultats de complexité pour la classe des graphes planaires subcubiques. Enfin, au Chapitre 4, nous avons abordé la coloration d'arêtes sommets adjacents distinguants en déterminant les majorations de l'indice avd-chromatique en fonction du degré moyen maximum. Notre travail s'inscrit dans la continuité de celui effectué par Wang et Wang en 2010. Plus précisément, nous nous sommes focalisés sur la famille des graphes de degré maximum au moins 5. / In this thesis, we are interested in various coloring of graphs under constraints. We study acyclic coloring, strong edge coloring and adjacent vertex-distinguishing edge coloring.In Chapter 2, we consider acyclic coloring and we bound the acyclic chromatic number by a function of the maximum degree of the graph. We also study acyclic list coloring. The notion of acyclic list coloring of planar graphs was introduced by Borodin, Fon-Der Flaass, Kostochka, Raspaud, and Sopena. They conjectured that every planar graph is acyclically 5-choosable. We obtain some sufficient conditions for planar graphs to be acyclically 3-choosable.In Chapter 3, we study strong edge coloring of graphs. We prove some upper bounds of the strong chromatic index of subcubic graphs as a function of the maximum average degree. We also obtain a tight upper bound for the minimum number of colors in a strong edge coloring of outerplanar graphs as a function of the maximum degree. We also prove that the strong edge k-colouring problem, when k=4,5,6, is NP-complete for subcubic planar bipartite graphs with some girth condition. Finally, in Chapter 4, we focus on adjacent vertex-distinguishing edge coloring, or avd-coloring, of graphs. We bound the avd-chromatic number of graphs by a function of the maximum average degree. This work completes a result of Wang and Wang in 2010.
|
Page generated in 0.1119 seconds