Spelling suggestions: "subject:"combinatorics anda aptimization"" "subject:"combinatorics anda anoptimization""
131 |
Variations on a Theme: Graph HomomorphismsRoberson, David E. January 2013 (has links)
This thesis investigates three areas of the theory of graph homomorphisms: cores of graphs, the homomorphism order, and quantum homomorphisms.
A core of a graph X is a vertex minimal subgraph to which X admits a homomorphism. Hahn and Tardif have shown that, for vertex transitive graphs, the size of the core must divide the size of the graph. This motivates the following question: when can the vertex set of a vertex transitive graph be partitioned into sets which each induce a copy of its core? We show that normal Cayley graphs and vertex transitive graphs with cores half their size always admit such partitions. We also show that the vertex sets of vertex transitive graphs with cores less than half their size do not, in general, have such partitions.
Next we examine the restriction of the homomorphism order of graphs to line graphs. Our main focus is in comparing this restriction to the whole order. The primary tool we use in our investigation is that, as a consequence of Vizing's theorem, this partial order can be partitioned into intervals which can then be studied independently. We denote the line graph of X by L(X). We show that for all n ≥ 2, for any line graph Y strictly greater than the complete graph Kₙ, there exists a line graph X sitting strictly between Kₙ and Y. In contrast, we prove that there does not exist any connected line graph which sits strictly between L(Kₙ) and Kₙ, for n odd. We refer to this property as being ``n-maximal", and we show that any such line graph must be a core and the line graph of a regular graph of degree n.
Finally, we introduce quantum homomorphisms as a generalization of, and framework for, quantum colorings. Using quantum homomorphisms, we are able to define several other quantum parameters in addition to the previously defined quantum chromatic number. We also define two other parameters, projective rank and projective packing number, which satisfy a reciprocal relationship similar to that of fractional chromatic number and independence number, and are closely related to quantum homomorphisms. Using the projective packing number, we show that there exists a quantum homomorphism from X to Y if and only if the quantum independence number of a certain product graph achieves |V(X)|. This parallels a well known classical result, and allows us to construct examples of graphs whose independence and quantum independence numbers differ. Most importantly, we show that if there exists a quantum homomorphism from a graph X to a graph Y, then ϑ̄(X) ≤ ϑ̄(Y), where ϑ̄ denotes the Lovász theta function of the complement. We prove similar monotonicity results for projective rank and the projective packing number of the complement, as well as for two variants of ϑ̄. These immediately imply that all of these parameters lie between the quantum clique and quantum chromatic numbers, in particular yielding a quantum analog of the well known ``sandwich theorem". We also briefly investigate the quantum homomorphism order of graphs.
|
132 |
Cops and Robber Game with a Fast RobberMehrabian, Abbas January 2011 (has links)
Graph searching problems are described as games played on graphs, between a set of searchers and a fugitive. Variants of the game restrict the abilities of the searchers and the fugitive and the corresponding search number (the least number of searchers that have a winning strategy) is related to several well-known parameters in graph theory. One popular variant is called the Cops and Robber game, where the searchers (cops) and the fugitive (robber) move in rounds, and in each round they move to an adjacent vertex. This game, defined in late 1970's, has been studied intensively. The most famous open problem is Meyniel's conjecture, which states that the cop number
(the minimum number of cops that can always capture the robber) of a connected graph
on n vertices is O(sqrt n).
We consider a version of the Cops and Robber game, where the robber is faster than the cops, but is not allowed to jump over the cops. This version was first studied in 2008.
We show that when the robber has speed s,
the cop number of a connected n-vertex graph can be as large as Omega(n^(s/s+1)). This improves the Omega(n^(s-3/s-2)) lower bound of Frieze, Krivelevich, and Loh (Variations on Cops and Robbers, J. Graph Theory, to appear). We also conjecture a general upper bound O(n^(s/s+1)) for the cop number,
generalizing Meyniel's conjecture.
Then we focus on the version where the robber is infinitely fast, but is again not allowed to jump over the cops. We give a mathematical characterization for graphs with cop number one. For a graph with treewidth tw and maximum degree Delta,
we prove the cop number is between (tw+1)/(Delta+1) and tw+1. Using this we show that the cop number of the m-dimensional hypercube is
between c1 n / m sqrt(m) and c2 n / m for some constants c1 and c2. If G is a connected interval graph on n vertices, then we give a polynomial time 3-approximation algorithm for finding the cop number of G, and prove that the cop number is O(sqrt(n)).
We prove that given n, there exists a connected chordal graph on n vertices
with cop number Omega(n/log n). We show a lower bound for the cop numbers of expander graphs, and use this to prove that the random G(n,p) that is not very sparse,
asymptotically almost surely has cop number between d1 / p and d2 log (np) / p for suitable constants d1 and d2. Moreover, we prove that a fixed-degree regular random graph with n vertices asymptotically almost surely has cop number Theta(n).
|
133 |
Convex relaxation for the planted clique, biclique, and clustering problemsAmes, Brendan January 2011 (has links)
A clique of a graph G is a set of pairwise adjacent nodes of G. Similarly, a biclique (U, V ) of a bipartite graph G is a pair of disjoint, independent vertex sets such that each node in U is adjacent to every node in V in G. We consider the problems of identifying the maximum clique of a graph, known as the maximum clique problem, and identifying the biclique (U, V ) of a bipartite graph that maximizes the product |U | · |V |, known as the maximum edge biclique problem. We show that finding a clique or biclique of a given size in a graph is equivalent to finding a rank one matrix satisfying a particular set of linear constraints. These problems can be formulated as rank minimization problems and relaxed to convex programming by replacing rank with its convex envelope, the nuclear norm. Both problems are NP-hard yet we show that our relaxation is exact in the case that the input graph contains a large clique or biclique plus additional nodes and edges. For each problem, we provide two analyses of when our relaxation is exact. In the first,
the diversionary edges are added deterministically by an adversary. In the second, each potential edge is added to the graph independently at random with fixed probability p. In the random case, our bounds match the earlier bounds of Alon, Krivelevich, and Sudakov, as well as Feige and Krauthgamer for the maximum clique problem.
We extend these results and techniques to the k-disjoint-clique problem. The maximum node k-disjoint-clique problem is to find a set of k disjoint cliques of a given input graph containing the maximum number of nodes. Given input graph G and nonnegative edge
weights w, the maximum mean weight k-disjoint-clique problem seeks to identify the set of k disjoint cliques of G that maximizes the sum of the average weights of the edges, with respect to w, of the complete subgraphs of G induced by the cliques. These problems may be considered as a way to pose the clustering problem. In clustering, one wants to partition a given data set so that the data items in each partition or cluster are similar and the items in different clusters are dissimilar. For the graph G such that the set of nodes represents a given data set and any two nodes are adjacent if and only if the corresponding items are similar, clustering the data into k disjoint clusters is equivalent to partitioning G into k-disjoint cliques. Similarly, given a complete graph with nodes corresponding to a given data set and edge weights indicating similarity between each pair of items, the data may be clustered by solving the maximum mean weight k-disjoint-clique problem.
We show that both instances of the k-disjoint-clique problem can be formulated as rank constrained optimization problems and relaxed to semidefinite programs using the nuclear norm relaxation of rank. We also show that when the input instance corresponds to a collection of k disjoint planted cliques plus additional edges and nodes, this semidefinite relaxation is exact for both problems. We provide theoretical bounds that guarantee exactness of our relaxation and provide empirical examples of successful applications of our algorithm to synthetic data sets, as well as data sets from clustering applications.
|
134 |
Highly Non-Convex Crossing SequencesMcConvey, Andrew January 2012 (has links)
For a given graph, G, the crossing number crₐ(G) denotes the minimum number of edge crossings when a graph is drawn on an orientable surface of genus a. The sequence cr₀(G), cr₁(G), ... is said to be the crossing sequence of a G. An equivalent definition exists for non-orientable surfaces.
In 1983, Jozef Širáň proved that for every decreasing, convex sequence of non-negative integers, there is a graph G such that this sequence is the crossing sequence of G. This main result of this thesis proves the existence of a graph with non-convex crossing sequence of arbitrary length.
|
135 |
A Quick-and-Dirty Approach to Robustness in Linear OptimizationKarimi, Mehdi January 2012 (has links)
We introduce methods for dealing with linear programming (LP) problems
with uncertain data, using the notion of weighted analytic centers.
Our methods are based on high interaction with the decision maker (DM) and try to
find solutions which satisfy most of his/her important criteria/goals.
Starting with the drawbacks of different methods for dealing with
uncertainty in LP, we explain how our methods improve most of them. We prove
that, besides many practical advantages, our approach is theoretically
as strong as robust optimization. Interactive cutting-plane algorithms are
developed for concave and quasi-concave utility functions. We present some
probabilistic bounds for feasibility and evaluate our approach by means
of computational experiments.
|
136 |
Homomorphic EncryptionWeir, Brandon January 2013 (has links)
In this thesis, we provide a summary of fully homomorphic encryption, and in particular, look at the BGV encryption scheme by Brakerski, Gentry, and Vaikuntanathan; as well the DGHV encryption scheme by van Dijk, Gentry, Halevi, and Vaikuntanathan. We explain the mechanisms developed by Gentry in his breakthrough work, and show examples of how they are used.
While looking at the BGV encryption scheme, we make improvements to the underlying lemmas dealing with modulus switching and noise management, and show that the lemmas as currently stated are false. We then examine a lower bound on the hardness of the Learning With Errors lattice problem, and use this to develop specific parameters for the BGV encryption scheme at a variety of security levels.
We then study the DGHV encryption scheme, and show how the somewhat homomorphic encryption scheme can be implemented as both a fully homomorphic encryption scheme with bootstrapping, as well as a leveled fully homomorphic encryption scheme using the techniques from the BGV encryption scheme. We then extend the parameters from the optimized version of this scheme to higher security levels, and describe a more straightforward way of arriving at these parameters.
|
137 |
Implementing the Schoof-Elkies-Atkin Algorithm with NTLKok, Yik Siong 25 April 2013 (has links)
In elliptic curve cryptography, cryptosystems are based on an additive subgroup of an elliptic curve defined over a finite field, and the hardness of the Elliptic Curve Discrete Logarithm Problem is dependent on the order of this subgroup. In particular, we often want to find a subgroup with large prime order. Hence when finding a suitable curve for cryptography, counting the number of points on the curve is an essential step in determining its security.
In 1985, René Schoof proposed the first deterministic polynomial-time algorithm for point counting on elliptic curves over finite fields. The algorithm was improved by Noam Elkies and Oliver Atkin, resulting in an algorithm which is sufficiently fast for practical purposes. The enhancements leveraged the arithmetic properties of the l-th classical modular polynomial, where l- is either an Elkies or Atkin prime. As the Match-Sort algorithm relating to Atkin primes runs in exponential time, it is eschewed in common practice.
In this thesis, I will discuss my implementation of the Schoof-Elkies-Atkin algorithm in C++, which makes use of the NTL package. The implementation also supports the computation of classical modular polynomials via isogeny volcanoes, based on the methods proposed recently by Bröker, Lauter and Sutherland.
Existing complexity analysis of the Schoof-Elkies-Atkin algorithm focuses on its asymptotic performance. As such, there is no estimate of the actual impact of the Match-Sort algorithm on the running time of the Schoof-Elkies-Atkin algorithm for elliptic curves defined over prime fields of cryptographic sizes. I will provide rudimentary estimates for the largest Elkies or Atkin prime used, and discuss the variants of the Schoof-Elkies-Atkin algorithm using their run-time performances.
The running times of the SEA variants supports the use Atkin primes for prime fields of sizes up to 256 bits. At this size, the selective use of Atkin primes runs in half the time of the Elkies-only variant on average. This suggests that Atkin primes should be used in point counting on elliptic curves of cryptographic sizes.
|
138 |
Dynamic Programming: Salesman to SurgeonQian, David January 2013 (has links)
Dynamic Programming is an optimization technique used in computer science and mathematics. Introduced in the 1950s, it has been applied to many classic combinatorial optimization problems, such as the Shortest Path Problem, the Knapsack Problem, and the Traveling Salesman Problem, with varying degrees of practical success.
In this thesis, we present two applications of dynamic programming to optimization problems. The first application is as a method to compute the Branch-Cut-and-Price (BCP) family of lower bounds for the Traveling Salesman Problem (TSP), and several vehicle routing problems that generalize it. We then prove that the BCP family provides a set of lower bounds that is at least as strong as the Approximate Linear Program (ALP) family of lower bounds for the TSP. The second application is a novel dynamic programming model used to determine the placement of cuts for a particular form of skull surgery called Cranial Vault Remodeling.
|
139 |
Efficient Pairings on Various PlatformsGrewal, Gurleen 30 April 2012 (has links)
Pairings have found a range of applications in many areas of cryptography. As such, to
utilize the enormous potential of pairing-based protocols one needs to efficiently compute
pairings across various computing platforms. In this thesis, we give an introduction to
pairing-based cryptography and describe the Tate pairing and its variants. We then describe
some recent work to realize efficient computation of pairings. We further extend
these optimizations and implement the O-Ate pairing on BN-curves on ARM and x86-64
platforms. Specifically, we extend the idea of lazy reduction to field inversion, optimize
curve arithmetic, and construct efficient tower extensions to optimize field arithmetic. We
also analyze the use of affine coordinates for pairing computation leading us to the conclusion
that they are a competitive choice for fast pairing computation on ARM processors,
especially at high security level. Our resulting implementation is more than three
times faster than any previously reported implementation on ARM processors.
|
140 |
Improved approximation guarantees for lower-bounded facility location problemAhmadian, Sara January 2010 (has links)
We consider the lower-bounded facility location (LBFL) problem (, also known as load-balanced facility location), which is a generalization of uncapacitated facility location (UFL) problem where each open facility is required to serve a minimum number of clients. More formally, in the LBFL problem, we are given a set of clients Ɗ , a set of facilities Ƒ, a non-negative facility-opening cost f_i for each i ∈ Ƒ, a lower bound M, and a distance metric c(i,j) on the set Ɗ ∪ Ƒ, where c(i,j) denotes the cost of assigning client j to facility i. A feasible solution S specifies the set of open facilities F_S ⊆ Ƒ and the assignment of each client j to an open facility i(j) such that each open facility serves at least M clients. Our goal is to find feasible solution S that minimizes ∑_{i ∈ F_S} f_i + ∑_j c(i,j).
The current best approximation ratio for LBFL is 550. We substantially advance the state-of-the-art for LBFL by devising an approximation
algorithm for LBFL that achieves a significantly-improved approximation guarantee of
83.
|
Page generated in 0.1389 seconds