• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1371
  • 425
  • 367
  • 282
  • 177
  • 68
  • 58
  • 33
  • 25
  • 18
  • 17
  • 10
  • 10
  • 9
  • 9
  • Tagged with
  • 3777
  • 816
  • 540
  • 443
  • 430
  • 386
  • 364
  • 362
  • 357
  • 333
  • 319
  • 308
  • 306
  • 253
  • 250
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
811

Les oxydes type-pérovskite La1-xMxMn1-yM’yO3+δ (M : Pr ; Eu ou M’ : Al, (0≤x,y≤1) ) : synthèse par combustion et études des propriétés physico-chimiques et catalytiques / Perovskite-type oxides La1-xMxMn1-yM’yO3+δ (M : Pr ; Eu ou M’ : Al, (0≤x,y≤1)) : combustion synthesis and studies of physicochemical and catalytic properties

Najjar, Hend 11 February 2012 (has links)
La synthèse par combustion est un procédé simple et économique qui se base sur une réaction d’oxydoréduction entre un combustible (glycine) et un comburant (nitrates). La synthèse d’une série d’oxydes LaMnO3+δ purs a été optimisée en faisant varier le rapport glycine/nitrate=r de 0,43 à 0,8.Les surfaces spécifiques obtenues varient de 18 à 37 m²/g. Différentes espèces O2 désorbent des solides LMr : celles faiblement liées à la surface (α1-O2) et celles associées au réseau α2-O2 et β-O2 dont la désorption s’accompagne respectivement de la réduction de Mn4+ en Mn3+ et de Mn3+ en Mn2+. Les mélanges riches en glycine (r>0,53) améliorent la surface spécifique et la mobilité des espèces α2-O2 ce qui favorise une activité catalytique importante dans l’oxydation totale de CH4. Le solide obtenu avec un rapport stœchiométrique (r=0,53) est le plus stable thermiquement. La synthèse par combustion s’est avérée aussi efficace pour l’obtention des oxydes LaMn1-yAlyO3+δ (0≤y≤ 1). La substitution progressive de Mn par Al dans le sous réseau B de la structure type-pérovskite améliore la mobilité d’espèces α2-O2 dans le réseau. Le catalyseur le plus actif est obtenu pour y=0,1 en raison de sa surface spécifique et sa concentration superficielle en Mn les plus élevées. Le procédé par combustion a été aussi mis à profit pour préparer des solides type-pérovskite La1-xLnxMnO3+δ (Ln : Pr ;Eu, 0≤x≤1) substitués dans le sous réseau A. La mobilité de l’oxygène α2-O2 est améliorée par cette substitution particulièrement avec l’europium comme substituant. Un taux de substitution de 20% s’est avéré optimum pour l’activité catalytique dans l’oxydation du méthane. / Combustion synthesis is a simple and safe-time process. It is based on redox reaction between fuel ( glycine) and oxidant agent (nitrates). A series of nanocristalline powders LaMnO3+δ were successfully obtained by varying glycine/nitrate ratio (r) from 0.43 to 0.8. The obtained specific areas range in 18-37 m²/g. Different desorbed oxygen species from these solids were identified: those weakly adsorbed to the surface (α1-O2) and those diffusing from the bulk (α2-O2 and β-O2 ). The desorption of α2-O2 and β-O2 causes respectively the reduction of Mn4+ to Mn3+ and Mn3+ to Mn2+. The use of fuel rich precursor enhances the specific surface area, the reducibility of manganese and the mobility of desorbed oxygen. This criterion allows interesting catalytic properties in CH4 deep oxidation. The LM0,53 catalyst obtained in stoichiometric conditions exhibits the best thermal stability.The combustion synthesis is also useful to obtain LaMn1-yAlyO3+δ oxides in a large range of Al content (0≤y≤ 1). The Al-substitution for Mn improves α2-O2 mobility. The best catalyst is obtained for the optimal fraction y=0.1 of Al due to their higher surface areas and superficial Mn concentration. A series of substituted lanthanum manganite in the A sublattice of the perovskite-type structure La1-xLnxMnO3+δ (Ln : Pr ;Eu, 0≤x≤1) were obtained by combustion synthesis. The α2-O2 mobility was improved by this substitution. A fraction of 20% was found to be optimum for catalytic activity in deep oxidation of methane.
812

Methods for analysis of nonlinear thermoacoustic systems

Waugh, Iain Christopher January 2013 (has links)
This thesis examines the nonlinear behaviour of thermoacoustic systems by using approaches from the field of nonlinear dynamics. The underlying behaviour of a nonlinear system is determined by two things: first, by the type and form of the attractors in phase space, and second, by the mechanism that the system transitions from one attractor to another. For a thermoacoustic system, both of these things must be understood in order to define a safe operating region in parameter space, where no high-amplitude oscillations exist. Triggering in thermoacoustics is examined in a simple model of a horizontal Rijke tube. A triggering mechanism is presented whereby the system transitions from a stable fixed point to a stable limit cycle, via an unstable limit cycle. The practical stability of the Rijke tube was investigated when the system is forced by stochastic noise. Low levels of noise result in triggering much before the linear stability limit. Stochastic stability maps are introduced to visualise the practical stability of a thermoacoustic system. The triggering mechanism and stochastic dependence of the Rijke tube match extremely well with results from an experimental combustor. The most common attractors in thermoacoustic systems are fixed points and limit cycles. In order to define the nonlinear behaviour of a thermoacoustic system, it is therefore important to find the regions of parameter space where limit cycles exist. Two methods of finding limit cycles in large thermoacoustic sytems are presented: matrix-free continuation methods and gradient methods. Continuation methods find limit cycles numerically in the time domain, with no additional assumptions other than those used to form the governing equations. Once the limit cycles are found, these continuation methods track them as the operating condition of the system changes. Most continuation methods are impractical for finding limit cycles in large thermoacoustic systems because the methods require too much computational time and memory. In the literature, there are therefore only a few applications of continuation methods to thermoacoustics, all with low-order models. Matrix-free shooting methods efficiently calculate the limit cycles of dissipative systems and have been demonstrated recently in fluid dynamics, but are as yet unused in thermoacoustics. These matrix-free methods are shown to converge quickly to limit cycles by implicitly using a 'reduced order model' property. This is because the methods preferentially use the influential bulk motions of the system, whilst ignoring the features that are quickly dissipated in time. The matrix-free methods are demonstrated on a model of a ducted 2D diffusion flame, and the safe operating region is calculated as a function of the Peclet number and the heat release parameter. Both subcritical and supercritical Hopf bifurcations are found. Physical information about the flame-acoustic interaction is found from the limit cycles and Floquet modes. Invariant subspace preconditioning, higher order prediction techniques, and multiple shooting techniques are all shown to reduce the time required to generate bifurcation surfaces. Two types of shooting are compared, and two types of matrix-free evaluation are compared. The matrix-free methods are also demonstrated on a model of a ducted axisymmetric premixed flame, using a kinematic G-equation solver. The methods find limit cycles, period-2 limit cycles, fold bifurcations, period-doubling bifurcations and Neimark-Sacker bifurcations as a function of two parameters: the location of the flame in the duct, and the aspect ratio of the steady flame. The model is seen to display rich nonlinear behaviour and regions of multistability are found. Gradient methods can also efficiently calculate the limit cycles of large systems. A scalar cost function is defined that describes the proximity of a state to a limit cycle. The gradient of the cost function is used in an optimisation routine to iteratively converge to a limit cycle (or fixed point). The gradient of the cost function is found with a forwards-backwards process: first, the direct equations are marched forwards in time, second, the adjoint equations are marched backwards in time. The adjoint equations are derived by partially differentiating the direct governing equations. The gradient method is demonstrated on a model of a horizontal Rijke tube. This thesis describes novel nonlinear analysis techniques that can be applied to coupled systems with both advanced acoustic models and advanced flame models. The techniques can characterise the rich nonlinear behaviour of thermoacoustic models with a level of detail that was not previously possible.
813

Formation of inorganic submicron particles under simulated pulverized coal combustion conditions

Neville, Matthew January 1982 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 246-250. / by Matthew Neville. / Sc.D.
814

Étude analytique et numérique du bruit de combustion indirect généré par l'injection d'ondes entropiques dans une tuyère / Analytical and Numerical study of indirect combustion noise generated by entropy disturbances in nozzle flows

Zheng, Jun 21 September 2016 (has links)
Avec la réduction du bruit de jet et de soufflante dans les moteurs aéronautiques modernes, la contribution relative du bruit de combustion (BC) a augmenté de manière significative au cours des dernières décennies. Deux mécanismes ont été identifiés comme étant du BC dans les années 70 : le bruit de combustion direct (BCD) et le bruit de combustion indirect (BCI). Le coeurde la thèse est axé sur le BCI avec le développement d’un modèle semi-analytique 2D axisymétrique prenant en compte la distorsion des ondes entropiques afin de prédire le BCI dans des écoulements de tuyère. L’état de l’art réalisé dans le premier chapitre met en évidence la nécessité d’améliorer la prédiction du BCI des modèles 1D en introduisant la distorsion radiale des ondes entropiques dans la tuyère. Le second chapitre du manuscrit détaille les outils disponibles à l’ONERA pour l’étude du BCI. Le modèle 2D est développé dans le troisième chapitre où les équations d’Euler sont réécritesen 2D pour la partie entropique et en 1D pour les perturbations acoustiques. Le quatrième chapitre décrit les simulations numériques réalisées pendant la thèse sur la configuration retenue (la tuyère DISCERN) : un calcul RANS et deux simulations des grandes échelles (SGE) sont effectués respectivementpour l’utilisation et la validation du modèle 2D. Dans le dernier chapitre, l’application du nouveau modèle utilisant le champ moyen RANS est accompli, les résultats sont comparés au modèle 1D et validés par confrontation avec les prédictions SGE. / Due to the reduction of jet mixing noise and fan noise in modern aero engines, the relative contribution of combustion noise (CN) has significantly increased over the last few decades. Two mechanisms have been identified as CN in the 70’s: direct combustion noise (DCN) and indirect combustion noise (ICN). A focus is made on the ICN in this thesis with the development of a twodimensionalaxisymmetric semi-analytical model taking into account the distortion of the entropy waves in order to predict the ICN for nozzle flows. The state of the art performed in the first chapter highlights the necessity to improve the prediction of ICN of 1D models by introducing the radial distortion of the entropy waves inside the nozzle. The second chapter of the manuscript details the ONERA’s tools for studying ICN. The 2D model is developed in the third chapter where the Euler equations are rewritten in 2D formfor the entropic part while acoustic perturbations are considered to be 1D. The fourth chapter describes the numerical computations performed during the thesis onthe retained configuration (the DISCERN nozzle): a RANS and two large eddy simulations (LES) are carried out respectively for the use and the validation of the 2D model. In the last chapter, the application of the new model using the RANS meanfield is performed, the results are compared tothe 1D model and validated by confrontation with the LES predictions.
815

A study of regularities associated with biochemical processes and renewable energy resources

Patel, Snehal A January 2011 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
816

The behavior of ash in pulverized coal under simulated combustion conditions

Padia, Ashok Kumar Sanwarmal January 1976 (has links)
Thesis. 1976. Sc.D.--Massachusetts Institute of Technology. Dept. of Chemical Engineering. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 321-328. / by Ashok S. Padia. / Sc.D.
817

Analysis, modification and improvement of performance of a closed, regenerative, reciprocating Brayton cycle engine.

Lee, Kangpil January 1978 (has links)
Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Vita. / Includes bibliographical references. / Ph.D.
818

Simulation studies of the effects of lean operation, turbocharging and heat transfer on spark ignition engines

Watts, Paula A January 1979 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Paula A. Watts. / M.S.
819

Physical insights of non-premixed MILD combustion using DNS

Doan, Nguyen Anh Khoa January 2019 (has links)
Moderate or Intense Low-oxygen Dilution (MILD) combustion is a combustion technology that can simultaneously improve the energy efficiency and reduce the pollutant emissions of combustion devices. It is characterised by highly preheated reactants and a small temperature rise during combustion due to the large dilution of the reactant mixture with products of combustion. These conditions are generally achieved using exhaust gas recirculation. However, the physical understanding of MILD combustion remains limited which prevents its more widely spread use. In this thesis, Direct Numerical Simulation (DNS) is used to study turbulence, premixed flames and MILD combustion to obtain these additional physical insights. In a first stage, the scale-locality of the energy cascade is analysed by applying a multiscale analysis methodology, called the bandpass filter method, on DNS of homogeneous isotropic turbulence. Evidence supporting this scale-locality were obtained and the results were found to be similar for Reynolds numbers ranging from 37 to 1131. Using the same method in turbulent premixed flames, the scale-locality of the energy cascade was still observed despite the presence of intense reactions. In addition, it was found that eddies of scales larger than the laminar flame thickness were imparting the most strain on the flame. In a second part, a methodology was developed to conduct the DNS of MILD combustion with mixture fraction variations. This methodology included the effect of mixing of exhaust gases with fuel and oxidiser in unburnt, burnt and reacting states. In addition, a specific chemical mechanism that includes the chemistry of ${\rm OH^*}$ was developed. From these DNS, the role of radicals on the inception of MILD combustion was studied. In particular, due to the reactions initiated by these radicals, the initial temperature rise in MILD combustion was occurring concurrently with an increase in the scalar dissipation rate of mixture fraction which is contrasting to conventional combustion. The reaction zones in MILD combustion were also analysed and extremely convoluted reaction zones were observed with frequent interactions among them. These interactions yielded the appearance of volumetrically distributed reactions. Furthermore, the adequacy of some species to identify these reaction zones was assessed and ${\rm OH}$ showed a poor correlation with regions of heat release. On the other hand, ${\rm OH^*}$, ${\rm HCO}$ or ${\rm OH} \times {\rm CH_2O}$ were found to be well correlated. Through the study of the flame index, the existence of non-premixed and premixed modes of combustion were also highlighted. The premixed mode was observed to be dominant but the contribution of the non-premixed mode to the total heat release was non negligible. Because of the presence of radicals and high reactant temperatures, auto-igniting regions and propagating reaction zones are both observed locally. The balance between these phenomena was investigated and it was found that this was strongly influenced by the typical lengthscale of the mixture fraction field, with a smaller lengthscale favouring sequential autoignition. Finally, using the bandpass filtering method, the effect of heat release rate in MILD combustion on the energy cascade was studied and this showed that the energy cascade was not unduly affected.
820

Stoker boiler CFD modeling improvements through alternative heat exchanger modeling

Depman, Albert J., III 01 May 2014 (has links)
Accurate models and realistic simulations are essential in developing cleaner and more efficient coal- and biomass-fired boilers. Using the CFD simulation software Fluent The University of Iowa created a model of an industrial boiler that adequately compares the practice of co-firing biomass and coal against firing only coal. The simulations used in this comparison, show significant circulation zones and an unrealistic temperature profile inside the boiler heat exchanger region. This model is effective for comparing the relative decrease in emissions when co-firing with biomass versus exclusively coal combustion, but it does not present a realistic simulation of biomass or coal combustion. The purpose of the current work is to develop a more realistic baseline coal combustion model. Calculations for the proximate and ultimate analysis of coal, as well as properties necessary for energy and mass flux computations, have been updated in the current model. The fuel bed model - a simple two-dimensional distribution of energy and mass fluxes from the grate - was kept the same due to the complexities of fuel bed modeling. Simulation boundary conditions and flow models were tested and modified to determine the most realistic model settings. The geometry and mesh grid of the boiler model were also varied in an attempt to fix problematic areas. Several approaches were implemented in an effort to reduce the circulation zones and generate a realistic temperature profile. The negative energy source term in the boiler representing the energy removed by the water pipes in the heat exchanger was analyzed, and different configurations of this sink were tested. Finally, the heat exchanger models built in to Fluent were studied and implemented. These models proved to be the most effective in reducing recirculation zones and decreasing high temperature gradients. While the current model of the coal-fired boiler has a higher overall temperature than the previous one, circulation zones are almost completely eliminated, the flow path has been improved, and the temperature profile in the boiler is more realistic.

Page generated in 0.0755 seconds