• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 4
  • 2
  • 2
  • Tagged with
  • 31
  • 31
  • 12
  • 8
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Artificial neural networks based subgrid chemistry model for turbulent reactive flow simulations

Sen, Baris Ali 17 August 2009 (has links)
Two new models to calculate the species instantaneous and filtered reaction rates for multi-step, multi-species chemical kinetics mechanisms are developed based on the artificial neural networks (ANN) approach. The proposed methodologies depend on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence level of interest. The thermo-chemical database is constructed by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. In this approach, the information regarding the actual geometry of interest is not needed within the LEM computations. The developed models are validated extensively on the large eddy simulations (LES) of (i) premixed laminar-flame-vortex-turbulence interaction, (ii) temporally mixing non-premixed flame with extinction-reignition characteristics, and (iii) stagnation point reverse flow combustor, which utilizes exhaust gas re-circulation technique. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless.
22

A crank angle resolved CIDI engine combustion model with arbitrary fuel injection for control purpose

Kim, Chung-Gong 18 June 2004 (has links)
No description available.
23

Effects of Thermoacoustic Oscillations on Spray Combustion Dynamics with Implications for Lean Direct Injection Systems

Chishty, Wajid Ali 07 July 2005 (has links)
Thermoacoustic instabilities in modern high-performance, low-emission gas turbine engines are often observable as large amplitude pressure oscillations and can result in serious performance and structural degradations. These acoustic oscillations can cause oscillations in combustor through-flows and given the right phase conditions, can also drive unsteady heat release. This coupling has the potential to enhance the amplitude of pressure oscillations. To curb the potential harms caused by the existence of thermoacoustic instabilities, recent efforts have focused on the active suppression and even complete control of these instabilities. Intuitively, development of effective active combustion control methodologies is strongly dependent on the knowledge of the onset and sustenance of thermoacoustic instabilities. Specially, non-premixed spray combustion environment pose additional challenges due to the inherent unstable dynamics of sprays. The understanding of the manner in which the combustor acoustics affect the spray characteristics, which in turn result in heat release oscillation, is therefore, of paramount importance. The experimental investigations and the modeling studies conducted towards achieving this knowledge have been presented in this dissertation. Experimental efforts comprise both reacting and non-reacting flow studies. Reacting flow experiments were conducted on a overall lean direct injection, swirl-stabilized combustor rig. The investigations spanned combustor characterization and stability mapping over the operating regime. All experiments were performed under atmospheric pressure condition, which is considered as an obvious first step towards providing valuable insights into more intense processes in actual gas turbine combustors. The onset of thermoacoustic instability and the transition of the combustor to two unstable regimes were investigated via phase-locked chemiluminescence imaging and measurement and phase-locked acoustic characterization. It was found that the onset of the thermoacoustic instability is a function of the energy gain of the system, while the sustenance of instability is due to the in-phase relationship between combustor acoustics and unsteady heat release driven by acoustic oscillations. The presence of non-linearities in the system between combustor acoustic and heat release and also between combustor acoustics and air through-flow were found to exist. The impact of high amplitude limit-cycle pressure on droplet breakdown under very low mean airflow and the localized effects of forced primary fuel modulations on heat release were also investigated. The non-reacting flow experiments were conducted to study the spray behavior under the presence of an acoustic field. An isothermal acoustic rig was specially fabricated, where the pressure oscillations were generated using an acoustic driver. Phase Doppler Anemometry was used to measure the droplet velocities and sizes under varying acoustic forcing conditions and spray feed pressures. Measurements made at different locations in the spray were related to these variations in mean and unsteady inputs. The droplet velocities were found to show a second order response to acoustic forcing with the cut-off frequency equal to the relaxation time corresponding to mean droplet size. It was also found that under acoustic forcing the droplets migrate radially away from the spray centerline and show oscillatory excursions in their movement. Non-reacting flow experiments were also performed using Time-Resolved Digital Particle Image Velocimetry to characterize modulated sprays. Frequency response of droplet diameters were analyzed in the pulsed spray. These pilot experiments were conducted to assess the capability of the system to measure dynamic data. Modeling efforts were undertaken to gain physical insights of spray dynamics under the influence of acoustic forcing and to explain the experimental findings. The radial migration of droplets and their oscillatory movement were validated. The flame characteristics in the two unstable regimes and the transition between them were explained. It was found that under certain acoustic and mean air-flow condition, bands of high droplet densities were formed which resulted in diffusion type group burning of droplets. It was also shown that very high acoustic amplitudes cause secondary breakup of droplets. / Ph. D.
24

Implementation of a combustion model based on the flamelet concept and its application to turbulent reactive sprays

Winklinger, Johannes Franz 30 March 2015 (has links)
El modelado CFD se ha convertido en una herramienta aceptada y ampliamente utilizada en el ámbito del diseño de motores de combustión interna alternativos. Los modelos de combustión avanzados ayudan a comprender los fenómenos complejos químicos y físicos del proceso de combustión y aportan información detallada que no se puede obtener con experimentos. Indudablemente, el modelado del proceso de combustión turbulenta parcialmente premezclada característico de los chorros Diesel es particularmente difícil y por lo tanto es un tema de gran interés para la comunidad científica. Los retos más importantes del modelado de este tipo de llamas son la predicción del proceso del auto-encendido, caracterizado por el tiempo de retraso, y la estructura de la llama cuasi-estacionaria con su característica longitud de lift-off. Estos dos parámetros globales de los chorros Diesel son importantes por varios aspectos. Primero, es relativamente sencillo medir estos dos parámetros y por lo tanto utilizarlos para la validación de modelos y segundo, son factores determinantes en el proceso de la combustión en un motor. El auto-encendido marca el inicio de la tasa de liberación de calor y la longitud de lift-off desempeña un papel fundamental en la formación de hollín. El mecanismo de estabilización de la llama en la zona del lift-off todavía no es bien conocido aunque existen diferentes teorías en la literatura, por lo que su modelado es en la actualidad un reto no resuelto. De acuerdo con el contexto descrito previamente, en este trabajo se pretende implementar un modelo de combustión integrado en un solver RANS utilizando la plataforma CFD OpenFOAM de código abierto. El modelo propuesto está basado en el concepto de flamelets usando una química detallada combinado con funciones de probabilidad determinadas a priori (presumed-PDF) para considerar el efecto de interacción entre la química y las características del flujo turbulento, que implica hipótesis importantes. En primer lugar, con el concepto flamelet se asume que una llama Diesel turbulenta quema localmente como un conjunto de llamas laminares de difusión de flujos opuestos. En segundo lugar se asume que las fluctuaciones de las propiedades introducidas por el flujo turbulento, que son las responsables de los fenómenos de interacción entre la química y la turbulencia durante la combustión, siguen un comportamiento estadístico en el tiempo de acuerdo a una distribución de probabilidad conocida a priori. Los fenómenos complejos del auto-encendido de hidrocarburos exigen el uso de mecanismo químicos detallados para recuperar satisfactoriamente los tiempos de retraso del auto-encendido en un rango amplio de condiciones termoquímicas. Una estrategia de interés para mantener los costes computacionales dentro de límites aceptables consiste en pre-tabular los resultados del cálculo de la química en tablas. Los parámetros independientes de estas tablas son la fracción de mezcla, la variable de progreso y la tasa de disipación escalar. Además, la hipótesis de que la distribuciones de probabilidad de las fluctuaciones generadas por la turbulencia sobre las propiedades del flujo son conocidas permite generar una tabla con la información química del problema apta para su aplicación en cálculo CFD en un entorno RANS. Esta aproximación basada en la pre-tabulación de los resultados químicos presenta dos ventajas fundamentales, siendo la primera de ellas la posibilidad de considerar modelos avanzados de interacción química-turbulencia y la segunda el relevante ahorro de tiempo de cálculo. Sin embargo, estas tablas representan un gran espacio de datos cuya gestión eficiente no es trivial. El desarrollo de un almacenamiento adecuado para un acceso de datos rápido y directo así como un esquema de interpolación multidimensional también forma parte del presente trabajo. / Winklinger, JF. (2014). Implementation of a combustion model based on the flamelet concept and its application to turbulent reactive sprays [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48488
25

A STUDY ON SPHERICAL EXPANDING FLAME SPEEDS OF METHANE, ETHANE, AND METHANE/ETHANE MIXTURES AT ELEVATED PRESSURES

De Vries, Jaap 2009 May 1900 (has links)
High-pressure experiments and chemical kinetics modeling were performed for laminar spherically expanding flames for methane/air, ethane/air, methane/ethane/air and propane/air mixtures at pressures between 1 and 10 atm and equivalence ratios ranging from 0.7 to 1.3. All experiments were performed in a new flame speed facility capable of withstanding initial pressures up to 15 atm. The facility consists of a cylindrical pressure vessel rated up to 2200 psi. Vacuums down to 30 mTorr were produced before each experiment, and mixtures were created using the partial pressure method. Ignition was obtained by an automotive coil and a constant current power supply capable of reducing the spark energy close to the minimum ignition energy. Optical cine-photography was provided via a Z-type schlieren set up and a high-speed camera (2000 fps). A full description of the facility is given including a pressure rating and a computational conjugate heat transfer analysis predicting temperature rises at the walls. Additionally, a detailed uncertainty analysis revealed total uncertainty in measured flame speed of approximately +-0.7 cm/s. This study includes first-ever measurements of methane/ethane flame speeds at elevated pressures as well as unique high pressure ethane flame speed measurements. Three chemical kinetic models were used and compared against measured flame velocities. GRI 3.0 performed remarkably well even for high-pressure ethane flames. The C5 mechanism performed acceptably at low pressure conditions and under-predicted the experimental data at elevated pressures. Measured Markstein lengths of atmospheric methane/air flames were compared against values found in the literature. In this study, Markstein lengths increased for methane/air flames from fuel lean to fuel rich. A reverse trend was observed for ethane/air mixtures with the Markstein length decreasing from fuel lean to fuel rich conditions. Flame cellularity was observed for mixtures at elevated pressures. For both methane and ethane, hydrodynamic instabilities dominated at stoichiometric conditions. Flame acceleration was clearly visible and used to determine the onset of cellular instabilities. The onset of flame acceleration for each high-pressure experiment was recorded.
26

Role Of Hydrogen Injection Temperature On The Combustion Instability Of Cryogenic Rocket Engine

Biju Kumar, K S January 2012 (has links) (PDF)
Physical mechanism for high frequency instability in cryogenic engines at low hydrogen injection temperature has been a subject of debate for long time. Experimental and early developmental studies revealed no instabilities and it was only much later when liquid hydrogen at lower initial temperature (~50 to 100 K) was injected into the combustion chamber that instabilities were detected. From the compilations of the experimental data related to the instability of cryogenic engines by Hulka and Hutt, it was found that the instability was strongly connected to the temperature of hydrogen. Experiments conducted with hydrogen temperature ramping from a higher value to lower values indicated that the temperatures in excess of 90 K favor stability under most practical operating conditions. Even though this has been known for over forty years, there has been no clear and simple explanation for this. Many physical mechanisms have been hypothesized to explain how temperature ramping causes instability, but all appear to have limited range of applicability. Current understanding of cryogenic engine combustion instability has been achieved through a combination of experimental investigation and approximate analytical models as well as CFD tools. Various researchers have tried to link the low hydrogen injection temperature combustion instability phenomena with various potential mechanisms for combustion instability. They involve coupling of combustion acoustics with atomization, vaporization, mixing, chemical kinetics or any combination of these processes. Various studies related to the effect of recess, injector hydrodynamics, acoustic damping of gas liquid scheme injectors and effect of drop size distribution on the stability characteristics of cryogenic engines were compiled in the thesis. Several researchers examined fuel droplet vaporization as the rate controlling mechanism. Recently a new method for the evaluation of stability characteristics of the engine using model chamber were proposed by Russians and this is based on mixing as the rate controlling mechanism. Pros and cons of this method were discussed. Some people examined the combustion instability of rocket engines based on chemistry dynamics. A considerable amount of analytical and numerical studies were carried out by various researchers for finding out the cause of combustion instability. Because of the limitations of their analysis, they could not successfully explain the cause of combustion instability at low hydrogen injection temperature. A compilation of previous numerical studies were carried out. A number of researchers have applied CFD in the study of combustion instabilities in liquid propellant rocket engines. In the present thesis, a theoretical model has been developed based on the vaporization of droplets to predict the stability characteristics of the engine. The proposed concept focuses on three dimensional simulation of combustion instability for giving some meaningful explanations for the experimental work presented in the literature. In the present study the pressure wave corresponding to the transverse modes were superimposed on a three dimensional steady state operating conditions. Steady state parameters were obtained from the three dimensional combustion modeling. The conservation equations for mass, momentum and energy are non dimensionalized for facilitating the order of magnitude analysis. In order to do the stability analysis, variables are represented as the sum of their steady values and deviation from the steady state. A harmonic time dependence is assumed for the perturbations. For the transverse mode of oscillations independent variables of the zeroth order equations are r and θ only and the dependant variables are not functions of the axial distance. The axial dependence comes only through the first order equations. In this analysis, the wave motion in the combustion chamber is assumed to be linear, confining the nonlinearity to the vaporization process only. The reason behind making this assumption is that the vaporization process is the major mechanism driving the instability. Vaporization histories of liquid oxygen drops in a combustor with superimposed transverse oscillations were computed and stability characteristics of the engine were estimated. The stability characteristics of the engine are accessed from the solutions of first order equations. Effects of various parameters like droplet diameter, hydrogen injection temperature and hydrogen injection area on the stability characteristics of cryogenic engines are studied. A comparison of predicted and published experimental results was made which showed general agreement between experiment and computation. The present study and experimental results show clearly that hydrogen injection velocity is the critical parameter for instability rather than hydrogen injection temperature. What has happened in actual experiments when hydrogen injection temperature is varied is an effective alteration of the injection velocity that leads to the situation of instability. For higher relative velocity between hydrogen and liquid oxygen, the response of the vaporization rate in the presence of pressure wave is minimum compared to lower relative velocity. Due to this cryogenic engines will go to unstable mode at lower relative velocity.
27

Développement d'un modèle numérique de prédiction des émissions d'oxydes d'azote pour la simulation aux grandes échelles de chambres de combustion aéronautiques / Development of a numerical model to predict the emissionsof nitrogen oxides for the large eddy simulation of gas turbine chambers

Pecquery, François 06 June 2013 (has links)
Cette thèse est consacrée à l’amélioration des capacités de prédiction des émissions d’oxydes d’azote (NO et NO2) des foyers de combustion aéronautiques. Les travaux, exclusivement numériques, consistent d’abord dans une étude de la cinétique chimique responsable des émissions polluantes. Cetteétude conduit à l’écriture d’un modèle, nommé NOMANI (pour Nitrogen Oxide emission model with one-dimensional MANIfold), basé sur l’approche PCM-FPI (pour Presumed Conditional Moments - Flame Prolongation of ILDM) avec une variable de progrès additionnelle afin calculer l’avancement de la chimie azotée une fois la chimie carbonée à l’équilibre. Différentes validations sur des configurations laminaires simples puis des flammes de laboratoire de Sandia sont présentées. Les résultats en terme de structure de flamme et d'émission de monoxyde d’azote sont confrontés aux mesures expérimentales. Le dernier volet de ces travaux, disponible uniquement dans la version confidentielle du manuscrit, consiste dans le développement d’un modèle de prédiction de polluants associé au modèle TF-LES (pour Thickening Flame for Large Eddy Simulation). Le modèle développé est ensuite appliqué à des calculs d’une chambre de combustion aéronautique. / This thesis is focused on the prediction capabilities of nitrogen oxides (NO and NO2) for numerical tools applied to aeronautical combustion chambers. The modeling work is based on a study of the chemical kinetic that produced the pollutant emissions. This study leads to a model, called NOMANI (Nitrogen Oxide emission model with one-dimensional MANIfold), based on PCM-FPI (Presumed Conditional Moments - Flame Prolongation of ILDM) with an additional progress variable to compute the NO evolution once the carbon chemistry is at the equilibrium. Several benchmarks and test-cases (laminar and turbulent flames) are gathered in this study : Sandia flame have been computed and satisfactory comparisons with measurements are obtained. The last part of this work, only available in the confidential version of the manuscript, is the development of a model to predict pollutant associated with the model TF-LES (for Thickening Flame for Large Eddy Simulation). This model is then applied to computations of a aeronautical combustion chambers.
28

Modeling diesel combustion in heavy duty engine using detailed chemistry approach and CFD

Duyar, Serkan January 2014 (has links)
Emission and fuel consumption are among the key parameters when designing a combustion system. Combustion CFD can assist in this task only if good enough accuracy is achieved regarding combustion and emission predictions. The aim of this master thesis is to evaluate the use of detailed reaction mechanisms (as a substitute for standard combustion model) in terms of computational time and result accuracy. Several mechanisms for n-heptane are tested. Lund University optical engine experimental case is used for this evaluation.Results showed that detailed chemistry can predict ignition accurately but differences are observed in the peak cylinder pressure. The computational time also increased significantly as size and complexity of the mechanism increased. Recommendations are given to improve predictions using detailed chemistry approach which is found to be an interesting approach especially for lift-off length predictions.
29

Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité / Numerical simulation of turbulent combustion : Immersed Boundary Method for compressible flow, application to combustion behind a cavity

Merlin, Cindy 08 December 2011 (has links)
Une méthode de frontières immergées est développée pour la simulation d’écoulements compressibles et validée au travers de cas-tests spécifiques (réflexion d’ondes acoustiques et quantification de la conservation de la masse dans des canaux inclinés). La simulation aux grandes échelles (LES) d’une cavité transsonique est ensuite présentée. Le bouclage aéro-acoustique, très sensible aux conditions aux limites, est reproduit avec précision par la LES dans le cas où les parois sont immergées dans un maillage structurée. La comparaison des stratégies de modélisation de sous-maille pour cet écoulement transsonique et l’adaptation des filtres en présence de frontières immergées sont également discutées. Le rôle, souvent sous-estimé, du schéma de viscosité artificiel, est quantifié.Dans la dernière partie du manuscrit, des études sont réalisées pour aider au dimensionnement d’un nouveau concept de chambre de combustion où la flamme est stabilisée par la recirculation de gaz brûlés dans une cavité (chambre TVC pour Trapped Vortex Combustor). La modélisation de la combustion turbulente est basée sur une chimie tabulée, couplée à une fonction densité de probabilité présumée (PCM-FPI). L’étude de la dynamique de la flamme est réalisée pour diverses conditions de fonctionnement (débit de l’écoulement principal et présence ou non d’un swirl). Les spécificités de mise en œuvre de la simulation d’un écoulement de ce type sont discutées et un soin particulier est apporté au traitement de la condition de sortie, qui constitue un point sensible de la chaîne de modélisation. Les phénomènes d’instabilités et de retour de la flamme sont mis en évidence ainsi que les modifications à apporter au dispositif afin de minimiser ces effets. L’existence d’un cycle limite acoustique est souligné et une formule permettant d’anticiper le niveau des fluctuations de pression est proposée et validée. Une correction au modèle PCM-FPI est présentée afin de préserver la vitesse de flamme et d’assurer une reproduction plus précise de la dynamique de flamme. / An immersed boundary method has been developed for the simulation of compressible flow and validated with reference test cases (pressure wave reflection and quantification of mass conservation for various inclined channels). Large Eddy Simulation (LES) of a transonic cavity is then presented. The aeroacoustic feedback loop, which is highly sensitive to the boundary conditions, was accurately reproduced where the walls are immersed inside a structured grid. The comparison between the modeling approaches for this transonic flow and the correction of the filtering operation near immersed boundaries are also discussed. The often underestimated role of the numerical artificial dissipation is also quantified.In the last part of this manuscript, many studies are realized to help in the design of a new combustion chamber for Trapped Vortex Combustor (TVC). The turbulent combustion model is based on tabulated chemistry and a presumed probability density function (PCM-FPI) method.The flame dynamics is studied for various operating conditions (flowrate of the main flow and presence of swirl motion). Details concerning the realization of such a flow are discussed and special care is taken for the treatment of the most sensitive outlet boundary condition. The phenomena of combustion instabilities and of flame backflow are highlighted along with the modifications to be made for the device to minimize these effects. The existence of a acoustic limit cycle is emphasized and a formula is proposed and validated to anticipate the level of pressure fluctuations. Finally a correction to the PCM-FPI model is suggested to preserve the flame front speed and to ensure a more accurate description of the flame dynamics.
30

In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion

Barbier, Alvin Richard Sebastien 30 May 2022 (has links)
[ES] La actual crisis climática ha instado a la comunidad investigadora y a los fabricantes a brindar soluciones para hacer que el sector del transporte sea más sostenible. De entre las diversas tecnologías propuestas, la combustión a baja temperatura ha sido objeto de una extensa investigación. La combustión premezclada dual-fuel es uno de los conceptos que abordan el compromiso de NOx-hollín en motores de encendido por compresión manteniendo alta eficiencia térmica. Esta combustión hace uso de dos combustibles con diferentes reactividades para mejorar la controlabilidad de este modo de combustión en un amplio rango de funcionamiento. De manera similar a todos los modos de combustión premezclados, esta combustión es sensible a las condiciones de operación y suele estar sujeta a variabilidad cíclica con gradientes de presión significativos. En consecuencia, se requieren estrategias de control avanzadas para garantizar un funcionamiento seguro y preciso del motor. El control en bucle cerrado es una herramienta eficaz para abordar los desafíos que plantea la combustión premezclada dual-fuel. En este tipo de control, para mantener el funcionamiento deseado, las acciones de control se adaptan y corrigen a partir de una retroalimentación con las señales de salida del motor. Esta tesis presenta estrategias de control basadas en la medición de la señal de presión en el cilindro, aplicadas a motores de combustión premezclada dual-fuel. En ella se resuelven diversos aspectos del funcionamiento del motor mediante el diseño de controladores dedicados, haciéndose especial énfasis en analizar e implementar estas soluciones a los diferentes niveles de estratificación de mezcla considerados en estos motores (es decir, totalmente, altamente y parcialmente premezclada). Inicialmente, se diseñan estrategias de control basadas en el procesamiento de la señal de presión en el cilindro y se seleccionan acciones proporcionales-integrales para asegurar el rendimiento deseado del motor sin exceder las limitaciones mecánicas del motor. También se evalúa la técnica extremum seeking para realizar una supervisión de una combustión eficiente y la reducción de emisiones de NOx. Luego se analiza la resonancia de la presión en el cilindro y se implementa un controlador similar a aquel usado para el control de knock para garantizar el funcionamiento seguro del motor. Finalmente, se utilizan modelos matemáticos para diseñar un modelo orientado a control y un observador que tiene como objetivo combinar las señales medidas en el motor para mejorar las capacidades de predicción y diagnóstico en dicha configuración de motor. Los resultados de este trabajo destacan la importancia de considerar el control en bucle cerrado para abordar las limitaciones encontradas en los modos de combustión premezclada. En particular, el uso de la medición de presión en el cilindro muestra la relevancia y el potencial de esta señal para desarrollar estrategias de control complejas y precisas. / [CA] L'actual crisi climàtica ha instat a la comunitat investigadora i als fabricants a brindar solucions per a fer que el sector del transport siga més sostenible. D'entre les diverses tecnologies proposades, la combustió a baixa temperatura ha sigut objecte d'una extensa investigació. La combustió premesclada dual-fuel és un dels conceptes que aborden el compromís de NOx-sutge en motors d'encesa per compressió mantenint alta eficiència tèrmica. Aquesta combustió fa ús de dos combustibles amb diferents reactivitats per a millorar la controlabilitat d'aquest tipus de combustió en un ampli rang de funcionament. De manera similar a tots els tipus de combustió premesclada, aquesta combustió és sensible a les condicions d'operació i sol estar subjecta a variabilitat cíclica amb gradients de pressió significatius. En conseqüència, es requereixen estratègies de control avançades per a garantir un funcionament segur i precís del motor. El control en bucle tancat és una eina eficaç per a abordar els desafiaments que planteja la combustió premesclada dual-fuel. En aquesta mena de control, per a mantindre el funcionament desitjat, les accions de control s'adapten i corregeixen a partir d'una retroalimentació amb els senyals d'eixida del motor. Aquesta tesi presenta estratègies de control basades en el mesurament del senyal de pressió en el cilindre, aplicades a motors de combustió premesclada dual-fuel. En ella es resolen diversos aspectes del funcionament del motor mitjançant el disseny de controladors dedicats, fent-se especial èmfasi a analitzar i implementar aquestes solucions als diferents nivells d'estratificació de mescla considerats en aquests motors (és a dir, totalment, altament i parcialment premesclada). Inicialment, es dissenyen estratègies de control basades en el processament del senyal de pressió en el cilindre i se seleccionen accions proporcionals-integrals per a assegurar el rendiment desitjat del motor sense excedir les limitacions mecàniques del motor. També s'avalua la tècnica extremum seeking per a realitzar una supervisió d'una combustió eficient i la reducció d'emissions de NOx. Després s'analitza la ressonància de la pressió en el cilindre i s'implementa un controlador similar a aquell usat per al control de knock per a garantir el funcionament segur del motor. Finalment, s'utilitzen models matemàtics per a dissenyar un model orientat a control i un observador que té com a objectiu combinar els senyals mesurats en el motor per a millorar les capacitats de predicció i diagnòstic en aquesta configuració de motor. Els resultats d'aquest treball destaquen la importància de considerar el control en bucle tancat per a abordar les limitacions trobades en la combustió premesclada. En particular, l'ús del mesurament de pressió en el cilindre mostra la rellevància i el potencial d'aquest senyal per a desenvolupar estratègies de control complexes i precises. / [EN] The current climate crisis has urged the research community and manufacturers to provide solutions to make the transportation sector cleaner. Among the various technologies proposed, low temperature combustion has undergone extensive investigation. Premixed dual-fuel combustion is one of the concepts addressing the NOx-soot trade-off in compression ignited engines, while maintaining high thermal efficiency. This combustion makes use of two fuels with different reactivities in order to improve the controllability of this combustion mode over a wide range of operation. Similarly to all premixed combustion modes, this combustion is nevertheless sensitive to the operating conditions and traditionally exhibits cycle-to-cycle variability with significant pressure gradients. Consequently, advanced control strategies to ensure a safe and accurate operation of the engine are required. Feedback control is a powerful approach to address the challenges raised by the premixed dual-fuel combustion. By measuring the output signals from the engine, strategies can be developed to adapt and correct the control actions to maintain the desired operation. This thesis presents control strategies, based on the in-cylinder pressure signal measurement, applied to premixed dual-fuel combustion engines. Various objectives were addressed by designing dedicated controllers, where a special emphasis was made towards analyzing and implementing these solutions to the different levels of mixture stratification considered in these engines (i.e., fully, highly and partially premixed). At first, feedback control strategies based on the in-cylinder pressure signal processing were designed. Proportional-integral actions were selected to ensure the desired engine performance without exceeding the mechanical constraints of the engine. Extremum seeking was evaluated to track efficient combustion phasing and NOx emissions reduction. The in-cylinder pressure resonance was then analyzed and a knock-like controller was implemented to ensure safe operation of the engine. Finally, mathematical models were used to design a control-oriented model and a state observer that aimed to leverage the signals measured in the engine to improve the prediction and diagnostic capabilities in such engine configuration. The results from this work highlighted the importance of considering feedback control to address the limitations encountered in premixed combustion modes. Particularly, the use of the in-cylinder pressure measurement showed the relevance and potential of this signal to develop complex and accurate control strategies. / This thesis was financially supported by the Programa Operativo del Fondo Social Europeo (FSE) de la Comunitat Valenciana 2014-2020 through grant ACIF/2018/141. / Barbier, ARS. (2022). In-Cylinder Pressure-Based Control of Premixed Dual-Fuel Combustion [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183274

Page generated in 0.0887 seconds