• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 23
  • 10
  • Tagged with
  • 76
  • 76
  • 40
  • 39
  • 29
  • 25
  • 25
  • 22
  • 22
  • 19
  • 19
  • 19
  • 18
  • 16
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mesures couplées de richesse et de vitesse pour la combustion instationnaire en écoulement stratifié

Pasquier-Guilbert, Nathalie 20 December 2004 (has links) (PDF)
La connaissance simultanée de la richesse et vitesse locale est très importante dans de nombreuses applications de combustion et spécialement dans les moteurs à injection directe essence où la flamme se propage à travers une distribution de mélange air-carburant hétérogène. Cette étude reproduit ces hétérogénéités de richesse avec un mélange propane-air dans une chambre de combustion à volume constant. L'influence locale de la richesse et de la vitesse sur la propagation de la flamme est étudiée. La stratification est crée par un jet pulsé riche injecté dans une chambre en mélange pauvre, le mélange étant ensuite allumé. Deux diagnostics optiques ont été utilisés simultanément, la PIV pour la mesure de vitesse et la FARLIF pour la mesure de richesse à froid et en combustion. Les propriétés et gammes d'applications de la PIV et de la FARLIF ont été vérifiées. Ces méthodes ont ensuite été utilisées pour étudier les caractéristiques de la combustion stratifiée.
12

Développement d'une modélisation basée sur la tabulation de schémas cinétique complexe pour la simulation aux grandes échelles (LES) de l'autoflammation et de la combustion turbulente non prémélangée dans les moteurs à pistons

Tillou, Julien 29 January 2013 (has links) (PDF)
Dans un contexte où les questions environnementales et énergétiques ont une importance capitale, les constructeurs automobiles sont fortement poussés à développer des moteurs à combustion interne toujours plus économes et moins polluants. Pour le développement de procédés de combustion innovants et l'amélioration de leur compréhension, la simulation aux grandes échelles apparaît comme un outil prometteur. Ce travail de thèse traite du développement et de la validation d'un modèle pour la simulation aux grandes échelles de la combustion Diesel. Le modèle ADF-PCM, basé sur la tabulation de flammes de diffusion approchées auto-inflammantes étirées et permettant la prise en compte d'une cinétique chimique détaillée, est utilisé dans ces travaux. Le modèle ADF est tout d'abord introduit. Il permet d'approximer des flammes de diffusion laminaires à partir de flammelettes dont les termes chimiques proviennent de calculs de réacteurs homogènes. La première étape de ces travaux consiste à valider ces flammes de diffusion approchées dans des configurations proches de celles observées dans les moteurs Diesel. Le modèle ADF-PCM, initialement développé dans un formalisme RANS, est ensuite étendu à un formalisme LES pour des écoulements diphasiques et intégré dans le code LES compressible AVBP. Un modèle de stratification en température ainsi que les termes de couplage avec la phase liquide décrite par un formalisme Eulérien sont développés. Le modèle ADF-PCM est ensuite validé sur deux expériences de sprays Diesel en enceinte fermée. Il permet une bonne reproduction des résultats expérimentaux en termes de délai d'auto-inflammation, de dégagement de chaleur et de hauteur d'accrochage de la flamme. Les prédictions du modèle ADF-PCM sont ensuite comparées avec celles d'autres modèles faisant différentes hypothèses simplificatrices par rapport à la structure de flamme et la stratification en sous-maille de la fraction de mélange. Les résultats obtenus à l'aide de ces différents modèles soulignent la nécessité de la prise en compte de ces effets, même pour des résolutions spatiales fines. Finalement, des comparaisons entre les résultats expérimentaux et la simulation sont réalisées avec le modèle ADF-PCM pour différents taux de gaz recirculants. Celui-ci montre une reproduction qualitative de l'effet des gaz recirculants sur la combustion.
13

Développement d'un code de transfert radiatif et de son couplage avec un code LES

Refahi, Sorour 18 February 2013 (has links) (PDF)
Les transferts radiatifs jouent un rôle important dans les chambres de combustion des installations industrielles. En effet, il existe un couplage fort entre la combustion turbulente et le rayonnement. Dans le but d'étudier ce couplage, le code Rainier est développé pour les calculs de pertes par rayonnement dans un écoulement réactif dans des géométries complexes. Ce code repose sur des simulations aux grandes échelles (LES) de la combustion turbulente. Il est basé sur les maillages tétraédriques non structurés. Le modèle de rayonnement appliqué à la modélisation des propriétés radiatives des gaz est le modèle CK (Correlated-k). La méthode statistique de Monte-Carlo (ERM) est utilisée pour résoudre l'équation de Transfert du Rayonnement (ETR). Le code de rayonnement est parallélisé et il montre une réponse linéaire en fonction du nombre de processeurs très proche de la réponse idéale. Une méthode de couplage de code de rayonnement avec le code de combustion LES est développée. Chacun des codes a sa propre logique d'architecture et de développement. En conséquence, le couplage entre les deux domaines d'étude est réalisé de telle façon que les échanges des données et les synchronisations entre eux soient assurés. Les résultats obtenus à partir du couplage des sur une chambre de combustion d'hélicoptère sont présentés. Nous avons montré que le rayonnement modifie les champs instantanés de température et d'espèces à l'intérieur de la chambre de combustion.
14

Simulation numérique du reformage autothermique du méthane

Caudal, Jean 15 February 2013 (has links) (PDF)
Le syngas est un mélange gazeux de CO et H2 qui constitue un intermédiaire important dans l'industrie pétrochimique. Plusieurs approches sont utilisées pour le produire. L'oxydation partielle non catalytique (POX) et le reformage à la vapeur (SMR) en font partie. Le reformage auto thermique du méthane (ATR) combine quant à lui ces deux procédés au sein d'un même réacteur. L'amélioration du rendement global du procédé ATR requiert une meilleure caractérisation du comportement des gaz au sein de la chambre. La simulation numérique apparaît comme un outil efficace pour y parvenir. Pour réduire le coût CPU, c'est généralement l'approche RANS (Reynolds Average Numerical Simulation) qui est privilégiée pour la simulation complète de la chambre. Cette approche repose sur l'utilisation de modèles, parmi lesquels le modèle de combustion turbulente, qui a pour objectif de représenter les interactions entre la turbulence et la réaction chimique au sein du mélange. Plusieurs stratégies ont été proposées pour le calculer, qui bénéficient globalement d'une large expérience pour les systèmes classiques mettant en jeu la combustion. Cependant, les flammes observées dans les réacteurs ATR présentent des propriétés assez différentes de ces configurations classiques. La validité des modèles de combustion turbulente classiques doit donc y être vérifiée. L'objectif de cette thèse est de répondre à ce besoin, en testant la validité de différents modèles de combustion turbulente. La première partie du travail a consisté à analyser les propriétés des flammes CH4/O2 enrichies en vapeur d'eau à haute pression, et a notamment permis le développement d'une méthode d'évaluation des temps caractéristiques d'un système chimique. Dans un deuxième temps, une expérience numérique à l'aide d'un code DNS a été réalisée, afin de servir de référence pour tester a priori sur des configurations ATR plusieurs modèles RANS de combustion turbulente couramment utilisés dans le milieu industriel.
15

Etude numérique de la combustion turbulente du prémélange pauvre méthane/air enrichi à l'hydrogène

Mameri, Abdelbaki 15 December 2009 (has links) (PDF)
L'enrichissement des hydrocarbures par l'hydrogène permet d'améliorer les performances de la combustion pauvre (augmentation de la réactivité, résistance à l'étirement, stabilité, réduction des polluants, ...). Il est primordial de connaitre les caractéristiques de la combustion de ces combustibles hybrides dans différentes conditions, afin de pouvoir les utiliser d'une manière sûre et efficace dans les installations pratiques. L'approche expérimentale reste coûteuse et limitée à certaines conditions opératoires. Cependant, le calcul numérique peut constituer la solution la plus adaptée, compte tenu du progrès réalisé dans le domaine de l'informatique et de la modélisation. Dans ce contexte, ce travail que nous avons effectué à l'ICARE (Institut de Combustion, Aérothermique et Réactivité, CNRS Orléans) vise à compléter les résultats des essais expérimentaux. Les effets de la richesse du mélange et l'ajout de l'hydrogène sur la structure et la formation des polluants sont étudiés dans ce travail. L'augmentation de la richesse du combustible permet de stabiliser la flamme, mais augmente la température et produit plus de CO, CO2 et NOx. Par contre, l'addition de H2 augmente l'efficacité du mélange, stabilise la flamme avec une légère élévation de la température maximale et une diminution des fractions massiques de CO, CO2 et NOx. Le remplacement d'une fraction de 10% où même 20% du gaz principal par l'hydrogène améliore les performances des installations et ne nécessite aucune modification sur les systèmes de combustion.
16

Les effets combinés de l'hydrogène et de la dilution dans un moteur à allumage commandé

Tahtouh, Toni 15 December 2010 (has links) (PDF)
Une des solutions pour diminuer les émissions polluantes émises par un moteur à combustion interne est de réinjecter une partie des gaz d'échappement (Exhaust Gas Recirculation, EGR) à l'admission. Cependant, dans le cas d'une dilution du mélange air-carburant trop importante, la combustion est plus instable voire ne pas s'entretenir. L'ajout d'une faible quantité d'hydrogène a le potentiel de contrer cet effet négatif de forte dilution. C'est dans ce contexte que ce travail de thèse est basé sur une étude détaillée des effets combinés de l'ajout de l'hydrogène et de la dilution dans un moteur à allumage commandé alimenté par du méthane ou de l'iso-octane. Dans la première partie de ce travail, le potentiel de l'ajout de l'hydrogène combiné à la dilution, en termes d'émissions polluantes et de rendement global du moteur, est montré. Dans la deuxième partie, afin de mieux comprendre l'effet de l'hydrogène et de la dilution dans un moteur à combustion interne et leurs influences sur les propriétés fondamentales de la combustion, la vitesse de combustion laminaire, paramètre fondamentale, a été déterminée expérimentalement pour des mélanges isooctane ou méthane avec de l'air contenant différents pourcentages d'hydrogène et de dilution. Des corrélations ont pu ainsi être formulées permettant d'estimer la vitesse fondamentale de combustion laminaire pour ces mélanges. Dans la dernière partie, l'utilisation de deux diagnostics optiques (la chemiluminescence de la flamme et la tomographie par plan laser du front de flamme couplé à la mesure de vitesse par vélocimétrie par imagerie de particules) a permis de quantifier l'effet de l'hydrogène et de la dilution sur la propagation de flamme turbulente dans un moteur à allumage commandé muni d'accès optiques. Nous avons ainsi montré que le la vitesse de combustion laminaire a un effet prépondérant, comparé au nombre de Lewis, sur la vitesse de combustion turbulente dans un moteur à allumage commandé.
17

Modélisation des phénomènes couples combustion-formation des suies-transferts radiatifs dans les chambres de combustion de turbine à gaz

Dorey, Luc-Henry 01 June 2012 (has links) (PDF)
Pour concevoir des foyers aéronautiques plus fiables et moins polluants, les industriels ont de plus en plus recours à des simulations numériques s'appuyant sur de nombreux modèles physiques. Si l'on s'intéresse en particulier aux problématiques des charges thermiques pariétales et des émissions polluantes, la modélisation des phénomènes couplés de combustion, de formation des suies et de transfert radiatif est nécessaire. Ainsi, cette thèse a pour objectif de développer une méthodologie permettant de simuler ces phénomènes couplés de manière instationnaire, dans un foyer représentatif des systèmes industriels. Un modèle de formation des suies simple et robuste, à caractère empirique, a d'abord été mis au point sur une configuration de flamme 1D laminaire prémélangée. Ce modèle a été choisi car, étant compatible avec des mécanismes réactionnels globaux, il est bien adapté aux simulations instationnaires en géométrie complexe. Dans un deuxième temps, il a été appliqué à la simulation instationnaire de l'écoulement turbulent réactif diphasique dans un foyer doté d'un prototype d'injecteur industriel. Les niveaux de température obtenus ainsi que la topologie du champ de fraction volumique de suies ont été comparés aux résultats expérimentaux. Les écarts constatés ont été analysés et des corrections ont été proposées. Enfin, une stratégie de couplage entre l'approche LES (Large Eddy Simulation) et un outil de simulation des transferts radiatifs basé sur la méthode de Monte Carlo a été mise au point et éprouvée sur le foyer étudié. L'écoulement apparaît peu affecté par le rayonnement, mais en revanche, les transferts radiatifs ont un impact relativement important sur les flux reçus par les parois
18

Etude numérique de la combustion turbulente du prémélange pauvre méthane/air enrichi à l'hydrogène / Numerical study of hydrogen enrichment of lean methane/air turbulent premixed combustion

Mameri, Abdelbaki 15 December 2009 (has links)
L’enrichissement des hydrocarbures par l’hydrogène permet d’améliorer les performances de la combustion pauvre (augmentation de la réactivité, résistance à l’étirement, stabilité, réduction des polluants, …). Il est primordial de connaitre les caractéristiques de la combustion de ces combustibles hybrides dans différentes conditions, afin de pouvoir les utiliser d’une manière sûre et efficace dans les installations pratiques. L’approche expérimentale reste coûteuse et limitée à certaines conditions opératoires. Cependant, le calcul numérique peut constituer la solution la plus adaptée, compte tenu du progrès réalisé dans le domaine de l’informatique et de la modélisation. Dans ce contexte, ce travail que nous avons effectué à l’ICARE (Institut de Combustion, Aérothermique et Réactivité, CNRS Orléans) vise à compléter les résultats des essais expérimentaux. Les effets de la richesse du mélange et l’ajout de l’hydrogène sur la structure et la formation des polluants sont étudiés dans ce travail. L’augmentation de la richesse du combustible permet de stabiliser la flamme, mais augmente la température et produit plus de CO, CO2 et NOx. Par contre, l’addition de H2 augmente l’efficacité du mélange, stabilise la flamme avec une légère élévation de la température maximale et une diminution des fractions massiques de CO, CO2 et NOx. Le remplacement d’une fraction de 10% où même 20% du gaz principal par l’hydrogène améliore les performances des installations et ne nécessite aucune modification sur les systèmes de combustion. / Fuel blending represents a promising approach for reducing harmful emissions from combustion systems. The addition of hydrogen to hydrocarbon fuels affects both chemical and physical combustion processes. These changes affect among others flame stability, combustor acoustics, pollutant emissions and combustor efficiency. Only a few of these issues are understood. Therefore, it is important to examine these characteristics to enable using blend fuels in practical energy systems productions. The experimental approach is restricted in general to specific operating conditions (temperature, pressure, H2 percentage in the mixture, etc.) due to its high costs. However, the numerical simulation can represent a suitable less costly alternative. The aim of this study done at ICARE is to complete the experiments. Equivalence ratio and hydrogen enrichment effects on lean methane/air flame structure were studied. The increase of the equivalence ratio, increases flame temperature and stability but produces more CO, CO2 and NOx. Hydrogen blending, increases flame stability and reduces emissions. The replacement of 10% or 20% of the fuel by hydrogen enhances installation efficiency with no modifications needed on the combustion system.
19

Étude et simulation de la postcombustion turbulente des explosifs homogènes sous-oxygénés / Study and simulation of the turbulent afterburning of oxygen-deficient homogeneous high explosives

Courtiaud, Sébastien 30 November 2017 (has links)
En physique des explosifs, la postcombustion désigne la phase de combustion qui intervient après la fin de la détonation lorsque l’explosif considéré est initialement déficient en oxydant. Les produits de détonation, qui apparaissent sous la forme d’une boule de feu, peuvent alors à leur tour être oxydés, ce qui permet de libérer une quantité supplémentaire d’énergie dans l’écoulement et d’augmenter le souffle. Ce phénomène complexe est piloté par l’interaction entre des ondes de chocs, une zone de mélange turbulente créée par des instabilités hydrodynamiques de type Rayleigh-Taylor et Richtmyer-Meshkov, et une flamme de diffusion. Compte tenu de son effet significatif sur la performance d’une explosif, une bonne compréhension de la postcombustion est nécessaire afin de pouvoir la modéliser et déterminer avec précision les effets d’une charge donnée. A cette fin, des travaux, à la fois numériques et expérimentaux, ont été menés afin de mieux comprendre le processus de mélange intervenant dans les boules de feu puis le phénomène dans son ensemble. Afin de contourner les difficultés liées à la caractérisation des produits de détonation, cette étude s’est concentrée sur l’explosion de capacités sphériques sous pression qui permet de produire un écoulement similaire à celui provoqué par une détonation sphérique. Les résultats obtenus sont semblables à ceux de la littérature sur la postcombustion des explosifs et apportent un éclairage nouveau sur l’influence de certains paramètres tels que la masse de l’explosif ou les propriétés des perturbations initiant les instabilités. / In the field of high explosives, the afterburning corresponds to the combustion processes occurring right after the end of a detonation, when the explosive used is originally oxidizer-deficient. Its detonation products, which appears as a fireball, can then be oxidised. The additional energy that their combustion generates enhances the blast and improves the explosive performance. This complex phenomenon is driven by the interaction between shock waves, a turbulent mixing layer caused by the emergence of Raylegh-Taylor and Richtmyer-Meshkov instabilities, and a diffusion flame. Because of its significant influence on the blast, a good understanding of the afterburning is thus necessary in order to model and predict accurately the effects of a given explosive device. To this end, an experimental and numerical work was conducted in order to, first, better understand the mixing process inside fireballs and, then, the whole phenomenon. In order to avoid the difficulties due to the imprecise characterisation of the detonation products, this study focused on the explosions of pressurised vessels which produces a flow similar to the one following a spherical detonation. The results are in good agreement with the ones found in the literature about the afterburning of high explosives. They also shed a new light on the influence of some parameters such as the mass of the charge or the properties of the perturbations initiating the instabilities.
20

Modélisation des phénomènes couples combustion-formation des suies-transferts radiatifs dans les chambres de combustion de turbine à gaz / Modelling of combustion, soot formation and radiative transfer coupled phenomena in gas turbine combustion chambers

Dorey, Luc-Henry 01 June 2012 (has links)
Pour concevoir des foyers aéronautiques plus fiables et moins polluants, les industriels ont de plus en plus recours à des simulations numériques s’appuyant sur de nombreux modèles physiques. Si l’on s’intéresse en particulier aux problématiques des charges thermiques pariétales et des émissions polluantes, la modélisation des phénomènes couplés de combustion, de formation des suies et de transfert radiatif est nécessaire. Ainsi, cette thèse a pour objectif de développer une méthodologie permettant de simuler ces phénomènes couplés de manière instationnaire, dans un foyer représentatif des systèmes industriels. Un modèle de formation des suies simple et robuste, à caractère empirique, a d’abord été mis au point sur une configuration de flamme 1D laminaire prémélangée. Ce modèle a été choisi car, étant compatible avec des mécanismes réactionnels globaux, il est bien adapté aux simulations instationnaires en géométrie complexe. Dans un deuxième temps, il a été appliqué à la simulation instationnaire de l’écoulement turbulent réactif diphasique dans un foyer doté d’un prototype d’injecteur industriel. Les niveaux de température obtenus ainsi que la topologie du champ de fraction volumique de suies ont été comparés aux résultats expérimentaux. Les écarts constatés ont été analysés et des corrections ont été proposées. Enfin, une stratégie de couplage entre l’approche LES (Large Eddy Simulation) et un outil de simulation des transferts radiatifs basé sur la méthode de Monte Carlo a été mise au point et éprouvée sur le foyer étudié. L’écoulement apparaît peu affecté par le rayonnement, mais en revanche, les transferts radiatifs ont un impact relativement important sur les flux reçus par les parois / Numerical simulations, involving numerous physical models, are more and more employed to design more reliable and less pollutant industrial combustors. In particular, focusing on wall thermal load and pollutant emission issues, coupled phenomena such as combustion, soot formation and radiative transfer have to be modelled. Thus, the aim of this PhD thesis is to develop a methodology to simulate these coupled phenomena in an unsteady way, in an industrial-like combustion chamber. A simple and robust empirical soot formation model has been developed and applied in a first step to a 1D laminar premixed flame configuration. This model was chosen because it is well adapted to unsteady simulations in complex geometries, as it is compatible with global reaction mechanisms. In a second step it was applied to the unsteady simulation of the two-phase turbulent reactive flow in a combustor equipped with an industrial injector prototype. Predicted temperature levels and topology of the soot volume fraction field were compared to experimental results. Some discrepancies were observed: they were analysed and corrections were proposed. Finally, a coupling strategy between the LES (Large Eddy Simulation) approach and a radiative transfer simulation tool based on the Monte Carlo method was developed and tested on the same combustor. It appears that radiative transfer does not greatly modify the flow, but has a relatively important effect on wall heat fluxes.

Page generated in 0.1299 seconds