• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Antenna Tracking and Command Destruct Capabilities Based on Angular Velocity and Acceleration

Altan, Hal 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / Most range safety telemetry tracking systems have antenna designs that feature an S-band (2200-2400 MHz) Telemetry Tracking and UHF-Band (400-450 MHz) Command Destruct feed along side an omni-directional antenna. The antennas must have, by design, high angular velocity (w) and acceleration (α) parameters to achieve these tasks. Generally, these parameters are user configurable through software and monitored through BIT (Built In Test) log files. The parameters are nominally set to their maximum values (ie. w=10 deg/sec and α = 15 deg/sec².) Considering the dynamics of a sample satellite launch vs. the ground tracking and omni antennas' combined capabilities, this document analyzes whether the target will stay within the beam.
2

AN INTEGRATED APPROACH TO ROBUST FLIGHT TERMINATION FOR SMALL MISSILE TEST AND TRAINING RANGE USE

Alves, Daniel F. Jr 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / This paper will investigate the areas that must be addressed to implement a truly integrated Range instrumentation system on a GPS-based Range, using a patented L-Band commanding scheme. Hardware issues will be highlighted as well the issues to be addressed in changing from an audio tone-frequency modulated command system to a digital system incorporating encryption and spread spectrum. Some thoughts addressing costs and schedule to incorporate this approach into the architecture of Joint Advanced Missile Instrumentation (JAMI) program are also presented, as well as a discussion of the benefits to be accrued over the existing system.
3

MMTS: Multi-Vehicle Metric & Telemetry System

Aspnes, Richard K., Yuma, Russell J. 10 1900 (has links)
International Telemetering Conference Proceedings / October 17-20, 1988 / Riviera Hotel, Las Vegas, Nevada / The Multi-Vehicle Metric & Telemetry System (MMTS) is a complete range system which performs real-time tracking, command destruct, and telemetry processing functions for support of range safety and the test and evaluation of airborne vehicles. As currently configured, the MMTS consists of five hardware and software subsystems with the capability to receive, process, and display tracking data from up to ten range sensors and telemetry data from two instrumented vehicles. During a range operation, the MMTS is employed to collect, process, and display tracking and telemetry data. The instrumentation sites designated for operational support acquire tracking and telemetered data and transmit these data to the MMTS. The raw data is then identified, formatted, time tagged, recorded, processed, and routed for display to mission control and telemetry display areas. Additionally, processed tracking data is transmitted back to instrumentation sites as an aid to acquire or maintain vehicle track. The mission control area consists of a control and status console, high resolution color graphics stations, and large screen displays. As the mission controller observes mission progress on the graphics stations operational decisions can be made and invoked by activation of the appropriate console controls. Visual alarms provided my MMTS will alert mission control personnel of hazardous conditions posed by any tracked vehicle. Manual action can then be taken to activate transmission of the MMTS vehicle destruct signal. The telemetry display area consists of ten fully-functional, PC compatible computers which are switchable to either of two telemetry front end processors. Each PC can be independently set up by telemetry analysts to display data of interest. A total of thirty data pages per PC can be defined and any defined data page can be activated during a mission. A unique feature of the MMTS is that telemetry data can be combined with tracking data for use by the range safety functions.
4

DEMONSTRATION OF A LOW-COST MOBILE LAUNCH RANGE SAFETY SYSTEM

Huff, Dave, Rice, Robert 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The Ballistic Missile Range Safety Technology (BMRST) program developed and demonstrated a low-cost, rapidly reconfigurable, launch range tracking and safety system. The system is comprised of both an on-board tracking unit and a ground based telemetry acquisition and control system. The on-board unit is based on an integrated GPS/INS unit with an embedded S-band telemetry transmitter. The ground system is comprised of fully redundant telemetry acquisition systems, telemetry processing computers, tracking computers, and secure/IRIG UHF command destruct transmission systems. This paper provides an overview of the system architecture and describes telemetry system design trades in particular. The paper describes how aircraft and satellite testing supports verification of system tracking capability. The paper closes by presenting data from the Quick Reaction Launch Vehicle (QRLV) flight test in Kodiak, Alaska.
5

MISSILE FLIGHT SAFETY AND TELEMETRY AT WHITE SANDS MISSILE RANGE

NEWTON, HENRY L. 11 1900 (has links)
International Telemetering Conference Proceedings / November 04-07, 1991 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Missile Flight Test Safety Managers (MFTSM) and other flight safety personnel at White Sands Missile Range (WSMR) constantly monitor the realtime space position of missile and airborne target vehicles and the telemetered missile and target vehicle performance parameters during the test flight to determine if these are about to leave Range boundaries or if erratic vehicle performance might endanger Range personnel, Range support assets or the nearby civilian population. WSMR flight safety personnel rely on the vehicle telemetry system to observe the Flight Termination System (FTS) parameters. A realtime closed loop that involves the ground command-destruct transmitter, the vehicle command-destruct receiver (CDR), other FTS components, the missile S-band telemetry transmitter, and the ground telemetry acquisition/ demultiplex system is active when the vehicle is in flight. The FTS engineer relies upon telemetry to provide read-back status of the flight termination system aboard the vehicle. WSMR flight safety personnel use the telemetry system to assess realtime airborne vehicle systems performance and advise the MFTSM. The MFTSM uses this information, in conjunction with space position information provided by an Interactive Graphics Display System (IGDS), to make realtime destruct decisions about missiles and targets in flight. This paper will aid the missile or target developer in understanding the type of vehicle performance data and FTS parameters WSMR flight safety personnel are concerned with, in realtime missile test operations.
6

Space-Based Flight Termination System Incorporating GPS Telecommand Link

Alves, Daniel F., Jr. 10 1900 (has links)
International Telemetering Conference Proceedings / October 27-30, 1997 / Riviera Hotel and Convention Center, Las Vegas, Nevada / This paper will investigate the areas which must be addressed to implement a truly integrated Range instrumentation system on a GPS-based Range, using a patented L-Band commanding scheme. Hardware issues will be highlighted as well the issues to be addressed in changing from an audio tone-frequency modulated command system to a digital system incorporating encryption and spread spectrum. Some thoughts addressing costs and schedule to incorporate this approach into the architecture of the U. S. Air Force Range Standardization and Automation (RSA) architecture, as a candidate GPS-based Range are also presented, as well as a discussion of the benefits to be accrued over the existing system, if this approach were adopted.

Page generated in 0.0753 seconds