Spelling suggestions: "subject:"commercial losses"" "subject:"eommercial losses""
1 |
[en] NEURAL NETWORKS IN THE IDENTIFICATION OF COMMERCIAL LOSSES OF THE ELECTRICAL SECTOR / [pt] REDES NEURAIS NA IDENTIFICAÇÃO DE PERDAS COMERCIAIS DO SETOR ELÉTRICOGUSTAVO VICTOR CHAVEZ ORTEGA 16 April 2009 (has links)
[pt] Atualmente, um dos maiores problemas das empresas brasileiras distribuidoras de
energia elétrica é o de perdas comerciais, responsáveis pela maior parte das perdas do
setor. A Light, por exemplo, é a terceira distribuidora com maiores perdas comerciais no
Brasil, com 3,79 milhões de clientes de baixa tensão em 31 municípios do Estado do Rio
de Janeiro. Estas perdas são causadas por fraudes nos medidores de energia, por
equipamentos defeituosos e, principalmente, pelas ligações clandestinas, conhecidas por
gatos, gambiarras ou macacos. Uma forma tradicional de combate às Perdas
Comerciais é a realização de inspeções nos consumidores. Entretanto, a seleção de
quais consumidores devem ser inspecionados é uma tarefa árdua para os especialistas
no assunto. As distribuidoras geralmente empregam um conjunto de metodologias
heurísticas para identificar os clientes de baixa tensão suspeitos de estarem cometendo
algum tipo de irregularidade. Todavia, a média de acertos dessas metodologias ainda é
bastante inferior ao desejado, acarretando prejuízos elevados para as distribuidoras
brasileiras. No caso específico da Light, a média de acerto na comprovação de clientes
fraudadores é de apenas 25%. Verifica-se, portanto, que o processo adotado não é
eficiente. Portanto, este trabalho tem como objetivo desenvolver uma metodologia que
identifique, com maior precisão, o perfil do cliente irregular (comprovada fraude no
medidor, furto por ligação clandestina ou irregularidade técnica). O sistema inteligente
resultante, denominado SIIPERCOM, baseia-se em Redes Neurais, para a filtragem
agrupando clientes com comportamentos semelhantes e classificação dos clientes de
cada grupo em normais ou irregulares. / [en] Currently, one of the biggest problems of Brazilian companies distributing electrical power is the loss commercial, responsible for most of the losses in the sector. The Light, for example, is the third largest distributor with commercial losses in Brazil, with 3.79 million clients of low voltage in 31 municipalities in the State of Rio de Janeiro. These losses are caused by fraud in the energy meters, for defective equipment, and principally by illegal connections, known as cats, stage lights or monkeys. The traditional form to combat to the commercial losses is the realization of inspections on consumers. However, the selection of which consumers should be inspected is an arduous task to specialists in the subject. The distributors usually employ a range of methodologies heuristics to identify customers with low voltage suspected to be committing some type of irregularity. However, the average of correct these methodologies is still much lower than desired, causing heavy losses to Brazilian distributors. In the specific case of Light, the average hit the evidence of customers fraudsters is only 25%. It appears therefore that the process adopted is not efficient. Therefore, this study aims to develop a methodology to identify, with greater precision, the irregular profile of the customer (meter was proven fraud, theft by illegal connection or technical irregularity). The resulting intelligent system, called SIIPERCOM, based on Neural Networks, for the 'filtering' grouping customers with similar behaviors and classification of the customers of each group in normal or irregular.
|
2 |
Desenvolvimento de ferramentas computacionais inteligentes para identificação de perdas comerciais em sistemas de energia /Ramos, Caio César Oba. January 2010 (has links)
Resumo: A detecção de fraudes nos sistemas de energia provocados por consumidores ilegais é o principal alvo em estudos de perdas comerciais pelas empresas de energia. Comumente usadas entre as técnicas de reconhecimento de padrões, as Redes Neurais Artificiais e as Máquinas de Vetores de Suporte têm sido aplicadas para a identificação de fraudes de maneira automática, entretanto essas técnicas sofrem com a demora na convergência e no alto peso computacional. Este trabalho introduziu o classificador Floresta de Caminhos Ótimos para um rápido reconhecimento das perdas comerciais, que tem demonstrado ser superior às demais técnicas inteligentes, como as Redes Neurais e as Máquinas de Vetores de Suporte, sendo muito mais rápido. Neste trabalho, também foram apresentadas comparações entre esses classificadores. / Abstract: Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied automatic frauds identification, however they suffer from slow convergence and high computacional burden. This work introduced the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than Neural Networks and Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. / Orientador: André Nunes de Souza / Coorientador: João Paulo Papa / Banca: Pedro da Costa Júnior / Banca: Geraldo Francisco Burani / Mestre
|
3 |
Desenvolvimento de ferramentas computacionais inteligentes para identificação de perdas comerciais em sistemas de energiaRamos, Caio César Oba [UNESP] 02 March 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:34Z (GMT). No. of bitstreams: 0
Previous issue date: 2010-03-02Bitstream added on 2014-06-13T18:08:32Z : No. of bitstreams: 1
ramos_cco_me_bauru.pdf: 615273 bytes, checksum: e67c9e65867e8155b656731b772bb8e1 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / A detecção de fraudes nos sistemas de energia provocados por consumidores ilegais é o principal alvo em estudos de perdas comerciais pelas empresas de energia. Comumente usadas entre as técnicas de reconhecimento de padrões, as Redes Neurais Artificiais e as Máquinas de Vetores de Suporte têm sido aplicadas para a identificação de fraudes de maneira automática, entretanto essas técnicas sofrem com a demora na convergência e no alto peso computacional. Este trabalho introduziu o classificador Floresta de Caminhos Ótimos para um rápido reconhecimento das perdas comerciais, que tem demonstrado ser superior às demais técnicas inteligentes, como as Redes Neurais e as Máquinas de Vetores de Suporte, sendo muito mais rápido. Neste trabalho, também foram apresentadas comparações entre esses classificadores. / Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied automatic frauds identification, however they suffer from slow convergence and high computacional burden. This work introduced the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than Neural Networks and Support Vector Machines, but much faster. Comparisons among these classifiers are also presented.
|
4 |
[en] INTELLIGENT SYSTEMS APPLIED TO FRAUD ANALYSIS IN THE ELECTRICAL POWER INDUSTRIES / [pt] SISTEMAS INTELIGENTES NO ESTUDO DE PERDAS COMERCIAIS DO SETOR DE ENERGIA ELÉTRICAJOSE EDUARDO NUNES DA ROCHA 25 March 2004 (has links)
[pt] Esta dissertação investiga uma nova metodologia, baseada em
técnicas inteligentes, para a redução das perdas comerciais
relativas ao fornecimento de energia elétrica. O objetivo
deste trabalho é apresentar um modelo de inteligência
computacional capaz de identificar irregularidades na
medição de demanda e consumo de energia elétrica,
considerando as características sazonais não lineares
das curvas de carga das unidades consumidoras,
características essas que são difíceis de se representar em
modelos matemáticos. A metodologia é baseada em três
etapas: categorização, para agrupar unidades consumidoras
em classes similares; classificação para descobrir
relacionamentos que expliquem o perfil da irregularidade no
fornecimento de energia elétrica e que permitam prever a
classe de um padrão desconhecido; e extração de
conhecimento sob a forma de regras fuzzy interpretáveis. O
modelo resultante foi denominado Sistema de Classificação
de Unidades Consumidoras de Energia Elétrica. O trabalho
consistiu em três partes: um estudo sobre os principais
métodos de categorização e classificação de padrões;
definição e implementação do Sistema de Classificação de
Unidades Consumidoras de Energia Elétrica; e o estudo de
casos. No estudo sobre os métodos de categorização foi
feito um levantamento bibliográfico da área, resultando em
um resumo das principais técnicas utilizadas para esta
tarefa, as quais podem ser divididas em algoritmos de
categorização hierárquicos e não hierárquicos. No estudo
sobre os métodos de classificação foram feitos levantamentos
bibliográficos dos sistemas Neuro-Fuzzy que resultaram em
um resumo sobre as arquiteturas, algoritmos de aprendizado
e extração de regras fuzzy de cada modelo analisado. Os
modelos Neuro-Fuzzy foram escolhidos devido a sua
capacidade de geração de regras lingüísticas. O Sistema de
Classificação de Unidades Consumidoras de Energia Elétrica
foi definido e implementado da seguinte forma: módulo de
categorização, baseado no algoritmo Fuzzy C-Means (FCM); e
módulo de classificação baseado nos Sistemas Neuro-Fuzzy
NEFCLASS e NFHB-Invertido. No primeiro módulo, foram
utilizadas algumas medidas de desempenho como o FPI
(Fuzziness Performance Index), que estima o grau de
nebulosidade (fuziness) gerado por um número específico de
clusters, e a MPE (Modified Partition Entropy), que estima
o grau de desordem gerado por um número específico de
clusters. Para validação do número ótimo de clusters,
aplicou-se o critério de dominância segundo o método de
Pareto. No módulo de classificação de unidades consumidoras
levou-se em consideração a peculiaridade de cada sistema
neuro-fuzzy, além da análise de desempenho comparativa
(benchmarking) entre os modelos. Além do objetivo de
classificação de padrões, os Sistemas Neuro-Fuzzy são
capazes de extrair conhecimento em forma de regras fuzzy
interpretáveis expressas como: SE x é A e y é B então
padrão pertence à classe Z. Realizou-se um amplo estudo de
casos, abrangendo unidades consumidoras de atividades
comerciais e industriais supridas em baixa e média tensão.
Os resultados encontrados na etapa de categorização foram
satisfatórios, uma vez que as unidades consumidoras foram
agrupadas de forma natural pelas suas características de
demanda máxima e consumo de energia elétrica. Conforme o
objetivo proposto, esta categorização gerou um número
reduzido de agrupamentos (clusters) no espaço de busca,
permitindo que o treinamento dos sistemas Neuro-Fuzzy fosse
direcionado para o menor número possível de grupos, mas com
elevada representatividade sobre os dados. Os resultados
encontrados com os modelos NFHB-Invertido e NEFCLASS
mostraram-se, na maioria dos casos, superiores aos melhores
resultados encontrados pelos modelos matemáticos comumente
utilizados. O desempenho dos modelos NFHB-Invertido e
NEFCLASS, em relação ao te / [en] This dissertation investigates a new methodology based on
intelligent techniques for commercial losses reduction in
electrical energy supply. The objective of this work is to
present a model of computational intelligence able to
identify irregularities in consumption and demand
electrical measurements, regarding the non-linearity of the
consumers seasonal load curve which is hard to represent
by mathematical models. The methodology is based on three
stages: clustering, to group consumers of electric energy
into similar classes; patterns classification, to discover
relationships that explain the irregularities profile and
that determine the class for an unknown pattern; and
knowledge extraction in form of interpretable fuzzy rules.
The resulting model was entitled Electric Energy Consumers
Classification System. The work consisted of three parts: a
bibliographic research about main methods for clustering
and patterns classification; definition and implementation
of the Electric Energy Consumers Classification System; and
case studies. The bibliographic research of clustering
methods resulted in a survey of the main techniques used
for this task, which can be divided into hierarchical and
non-hierarchical clustering algorithms. The bibliographic
research of classification methods provided a survey of
the architectures, learning algorithms and rules extraction
of the neuro-fuzzy systems. Neuro-fuzzy models were chosen
due to their capacity of generating linguistics rules.
The Electric Energy Consumers Classification System was
defined and implemented in the following way: a clustering
module, based on the Fuzzy CMeans (FCM) algorithm; and
classification module, based on NEFCLASS and Inverted-NFHB
neuro-fuzzy sytems. In the first module, some performance
metrics have been used such as the FPI (Fuzziness
Performance Index), which estimates the fuzzy level
generated by a specific number of clusters; and the MPE
(Modified Partition Entropy) that estimates disorder level
generated by a specific number of clusters. The dominance
criterion of Pareto method was used to validate optimal
number of clusters. In the classification module, the
peculiarities of each neuro-fuzzy system as well as
performance comparison of each model were taken into
account. Besides the patterns classification objective, the
neuro-Fuzzy systems were able to extract knowledge in form
of interpretable fuzzy rules. These rules are expressed
by: IF x is A and y is B then the pattern belongs to Z
class. The cases studies have considered industrial and
commercial consumers of electric energy in low and medium
tension. The results obtained in the clustering step were
satisfactory, since consumers have been clustered in a
natural way by their electrical consumption and demand
characteristics. As the proposed objective, the system has
generated an optimal low number of clusters in the search
space, thus directing the learning step of the neuro-fuzzy
systems to a low number of groups with high representation
over data. The results obtained with Inverted-NFHB and
NEFCLASS models, in the majority of cases, showed to be
superior to the best results found by the mathematical
methods commonly used. The performance of the Inverted-NFHB
and NEFCLASS models concerning to processing time was also
very good. The models converged to an optimal
classification solution in a processing time inferior to a
minute. The main objective of this work, that is the non-
technical power losses reduction, was achieved by the
assertiveness increases in the identification of the
cases with measuring irregularities. This fact made
possible some reduction in wasting with workers and
effectively improved the billing.
|
5 |
Detecção e identificação de perdas comerciais em sistemas de distribuição : metodologia baseada em floresta de caminhos ótimosTrevizan, Rodrigo Daniel January 2014 (has links)
O sistema elétrico brasileiro possui atualmente níveis de perdas elétricas da ordem de 15%. Destes, aproximadamente a metade são provenientes das chamadas perdas comerciais (PC) que ocorrem nos sistemas de distribuição. As PC são a soma de toda energia não faturada pelas distribuidoras, á exceção das perdas técnicas. As suas causas mais frequentes são os furtos de energia elétrica, fraudes e defeitos em medidores. Os custos provenientes dessas perdas são normalmente repassados pelas distribuidoras aos consumidores regulares. No entanto, novas regulamentações do regulador brasileiro do sistema elétrico, a Agência Nacional de Energia Elétrica (ANEEL), impõem limite a esse repasse, o que cria nas concessionárias um maior incentivo para o seu combate. Entre as metodologias empregadas para a mitigação de PC, tem sido destacadas na literatura aquelas baseadas na análise das bases de dados de clientes das empresas distribuidoras com o objetivo de reconhecer padrões de clientes irregulares. Neste contexto, neste trabalho é proposto e desenvolvido um sistema de combate a PC baseado no classificador supervisionado Floresta de Caminhos Ótimos (Optimum-Path Forest, OPF). São propostas a utilização de dados categóricos e a normalização de dados como modificações nos métodos encontrados na literatura. Os testes com o sistema desenvolvido são aplicado a uma base de dados sintetizada a partir de clientes residenciais, diferentemente de trabalhos em que se utilizaram dados de consumidores comerciais e industriais. Os resultados mostram que as modificações propostas podem melhorar o desempenho do OPF. O comparativo com outros métodos de classificação reafirma a eficiência do OPF mas contesta alguns resultados presentes na literatura. / The Brazilian electric power system has about 15% of losses. About a half of this amount is due to the so called commercial losses. The commercial losses are the sum of the unbilled energy less the technical losses. The commercial losses are mainly caused by electricity theft, frauds in electricity meters and electricity meter failure. The financial costs caused by these losses are included in the electricity bill, paid by the regular consumers. New regulations approved by the Brazilian regulatory agency for the electric system create a limit for this, which stimulates the investments in commercial loss mitigation by distribution companies. Among the methods used to mitigate commercial losses, those based on pattern recognition of irregular consumers within electric companies’ clients’ databases are some of the most promising. In this work, a system for commercial losses mitigation based on the supervised classifier Optimum-Path Forest (OPF) is studied and developed. Categorical data and data normalization are proposed as methods for improving classifier performance. In order to check the system performance, tests are conducted on a database derived from residential consumer data found in the literature, differently from other works which proposed data classification for commercial and industrial consumers only. The results show that using categorical data and normalization may improve OPF performance. Comparing this method with other classifiers confirms OPF’s efficiency but contests some results shown in the literature.
|
6 |
Proposta de ações de redução da inadimplência e das perdas comerciais em conjuntos habitacionais de baixa rendaMoraes, Caio César de January 2017 (has links)
Orientador: Prof. Dr. Thales Sousa / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2017. / As perdas não técnicas ou perdas comerciais são um grande problema enfrentado pelas distribuidoras de energia elétrica e pelo órgão regulador. Nesse sentido, o presente trabalho tem por objetivo propor ações de redução das perdas não técnicas, bem como das perdas financeiras das distribuidoras de energia elétrica em decorrência da inadimplência. Para tanto, serão apresentadas medidas de campo que permitam mudanças no comportamento dos consumidores, em especial aqueles em situação de risco social no que tange ao pagamento e à inadimplência. Serão também propostos métodos de cobrança e faturamento que permitam a redução das perdas não técnicas e da inadimplência. As contribuições do presente trabalho permitirão uma melhor gestão de cobrança e um novo sistema de corte horo-sazonal. / Non-technical losses or commercial losses are a major challenge faced by the electricity distribution companies and the regulatory agencies. This paper aims proposing actions to reduce non-technical losses and financial losses of electricity distribution as a result of default. Therefore, field measurements will be presented, which allow changes in consumer behavior, particularly those in social risk, with regard to payment and default. There will be proposed collection methods and billing that enable the reduction of non-technical losses and defaults. Contributions of this work will allow a better billing management and a new cut-off method based on daytime.
|
7 |
Detecção e identificação de perdas comerciais em sistemas de distribuição : metodologia baseada em floresta de caminhos ótimosTrevizan, Rodrigo Daniel January 2014 (has links)
O sistema elétrico brasileiro possui atualmente níveis de perdas elétricas da ordem de 15%. Destes, aproximadamente a metade são provenientes das chamadas perdas comerciais (PC) que ocorrem nos sistemas de distribuição. As PC são a soma de toda energia não faturada pelas distribuidoras, á exceção das perdas técnicas. As suas causas mais frequentes são os furtos de energia elétrica, fraudes e defeitos em medidores. Os custos provenientes dessas perdas são normalmente repassados pelas distribuidoras aos consumidores regulares. No entanto, novas regulamentações do regulador brasileiro do sistema elétrico, a Agência Nacional de Energia Elétrica (ANEEL), impõem limite a esse repasse, o que cria nas concessionárias um maior incentivo para o seu combate. Entre as metodologias empregadas para a mitigação de PC, tem sido destacadas na literatura aquelas baseadas na análise das bases de dados de clientes das empresas distribuidoras com o objetivo de reconhecer padrões de clientes irregulares. Neste contexto, neste trabalho é proposto e desenvolvido um sistema de combate a PC baseado no classificador supervisionado Floresta de Caminhos Ótimos (Optimum-Path Forest, OPF). São propostas a utilização de dados categóricos e a normalização de dados como modificações nos métodos encontrados na literatura. Os testes com o sistema desenvolvido são aplicado a uma base de dados sintetizada a partir de clientes residenciais, diferentemente de trabalhos em que se utilizaram dados de consumidores comerciais e industriais. Os resultados mostram que as modificações propostas podem melhorar o desempenho do OPF. O comparativo com outros métodos de classificação reafirma a eficiência do OPF mas contesta alguns resultados presentes na literatura. / The Brazilian electric power system has about 15% of losses. About a half of this amount is due to the so called commercial losses. The commercial losses are the sum of the unbilled energy less the technical losses. The commercial losses are mainly caused by electricity theft, frauds in electricity meters and electricity meter failure. The financial costs caused by these losses are included in the electricity bill, paid by the regular consumers. New regulations approved by the Brazilian regulatory agency for the electric system create a limit for this, which stimulates the investments in commercial loss mitigation by distribution companies. Among the methods used to mitigate commercial losses, those based on pattern recognition of irregular consumers within electric companies’ clients’ databases are some of the most promising. In this work, a system for commercial losses mitigation based on the supervised classifier Optimum-Path Forest (OPF) is studied and developed. Categorical data and data normalization are proposed as methods for improving classifier performance. In order to check the system performance, tests are conducted on a database derived from residential consumer data found in the literature, differently from other works which proposed data classification for commercial and industrial consumers only. The results show that using categorical data and normalization may improve OPF performance. Comparing this method with other classifiers confirms OPF’s efficiency but contests some results shown in the literature.
|
8 |
Detecção e identificação de perdas comerciais em sistemas de distribuição : metodologia baseada em floresta de caminhos ótimosTrevizan, Rodrigo Daniel January 2014 (has links)
O sistema elétrico brasileiro possui atualmente níveis de perdas elétricas da ordem de 15%. Destes, aproximadamente a metade são provenientes das chamadas perdas comerciais (PC) que ocorrem nos sistemas de distribuição. As PC são a soma de toda energia não faturada pelas distribuidoras, á exceção das perdas técnicas. As suas causas mais frequentes são os furtos de energia elétrica, fraudes e defeitos em medidores. Os custos provenientes dessas perdas são normalmente repassados pelas distribuidoras aos consumidores regulares. No entanto, novas regulamentações do regulador brasileiro do sistema elétrico, a Agência Nacional de Energia Elétrica (ANEEL), impõem limite a esse repasse, o que cria nas concessionárias um maior incentivo para o seu combate. Entre as metodologias empregadas para a mitigação de PC, tem sido destacadas na literatura aquelas baseadas na análise das bases de dados de clientes das empresas distribuidoras com o objetivo de reconhecer padrões de clientes irregulares. Neste contexto, neste trabalho é proposto e desenvolvido um sistema de combate a PC baseado no classificador supervisionado Floresta de Caminhos Ótimos (Optimum-Path Forest, OPF). São propostas a utilização de dados categóricos e a normalização de dados como modificações nos métodos encontrados na literatura. Os testes com o sistema desenvolvido são aplicado a uma base de dados sintetizada a partir de clientes residenciais, diferentemente de trabalhos em que se utilizaram dados de consumidores comerciais e industriais. Os resultados mostram que as modificações propostas podem melhorar o desempenho do OPF. O comparativo com outros métodos de classificação reafirma a eficiência do OPF mas contesta alguns resultados presentes na literatura. / The Brazilian electric power system has about 15% of losses. About a half of this amount is due to the so called commercial losses. The commercial losses are the sum of the unbilled energy less the technical losses. The commercial losses are mainly caused by electricity theft, frauds in electricity meters and electricity meter failure. The financial costs caused by these losses are included in the electricity bill, paid by the regular consumers. New regulations approved by the Brazilian regulatory agency for the electric system create a limit for this, which stimulates the investments in commercial loss mitigation by distribution companies. Among the methods used to mitigate commercial losses, those based on pattern recognition of irregular consumers within electric companies’ clients’ databases are some of the most promising. In this work, a system for commercial losses mitigation based on the supervised classifier Optimum-Path Forest (OPF) is studied and developed. Categorical data and data normalization are proposed as methods for improving classifier performance. In order to check the system performance, tests are conducted on a database derived from residential consumer data found in the literature, differently from other works which proposed data classification for commercial and industrial consumers only. The results show that using categorical data and normalization may improve OPF performance. Comparing this method with other classifiers confirms OPF’s efficiency but contests some results shown in the literature.
|
9 |
Discussão de uma metodologia para diagnóstico e ações para redução de perdas de água: aplicação no sistema de abastecimento de água da Região Metropolitana de São Paulo. / Discussion of a methodology for diagnosis and actions to reduce water losses: application in the water supply system in metropolitan region of Sao Paulo.Melato, Débora Soares 01 April 2010 (has links)
O presente trabalho apresenta uma discussão de metodologia para o diagnóstico e ações para redução de perdas de água, auxiliando na determinação do perfil das perdas, permitindo uma melhor priorização das ações de combate e redução de perdas reais (físicas) e perdas aparentes (comerciais). Para o desenvolvimento desta metodologia, foi realizada uma ampla revisão bibliográfica, onde é apresentada a conceituação geral sobre perdas de água, suas causas e ocorrências, indicadores, ações para redução, e uma abordagem detalhada quanto às metodologias existentes para avaliação de perdas e ferramentas disponíveis para isto. A metodologia aqui aplicada desenvolve a avaliação das perdas através do balanço hídrico, utilizando o software gratuito desenvolvido pelo Banco Mundial (W-B Easy Calc - v1.17), e foi aplicada no sistema de abastecimento de água da Região Metropolitana de São Paulo (RMSP). Foram levantados os dados básicos de controle do sistema e realizados ensaios de campo, com medições de pressão e ensaios para determinação das perdas aparentes. Como estudo de caso, a metodologia foi aplicada em três setores de abastecimento da área central da RMSP, com características distintas. Os resultados do diagnóstico das perdas foram coerentes com as expectativas. Em função dos resultados, em cada setor deverá ser desenvolvida uma estratégia específica para a redução de perdas. / This study presents a discussion of a methodology for diagnosis and actions to reduce water losses, to assist in determining the profile of water losses, allowing a better prioritization of actions to combat and reduce real (physical) losses and apparent (commercial) losses. For developing the methodology, it was conducted an extensive bibliography review, where is presented the general concepts on water losses, its causes and events, indicators, actions to reduce, and a detailed discussion about the existing methodologies to assess losses and tools available for this. The applied methodology consists of an assessment of losses through the water balance, using free software developed by the World Bank (WB Easy Calc - v1.17) and it was applied in the water supply system in metropolitan region of Sao Paulo. To do this, it was necessary to collect basic data of system control and field tests, with pressure measurements and tests to determine apparent losses. As case study, the methodology was applied in three supply zones at the central area of metropolitan region of Sao Paulo, with different characteristics. The results of water losses diagnosis were consistent with expectations. With these results, a specific strategy should be developed in each sector for reducing losses.
|
10 |
Discussão de uma metodologia para diagnóstico e ações para redução de perdas de água: aplicação no sistema de abastecimento de água da Região Metropolitana de São Paulo. / Discussion of a methodology for diagnosis and actions to reduce water losses: application in the water supply system in metropolitan region of Sao Paulo.Débora Soares Melato 01 April 2010 (has links)
O presente trabalho apresenta uma discussão de metodologia para o diagnóstico e ações para redução de perdas de água, auxiliando na determinação do perfil das perdas, permitindo uma melhor priorização das ações de combate e redução de perdas reais (físicas) e perdas aparentes (comerciais). Para o desenvolvimento desta metodologia, foi realizada uma ampla revisão bibliográfica, onde é apresentada a conceituação geral sobre perdas de água, suas causas e ocorrências, indicadores, ações para redução, e uma abordagem detalhada quanto às metodologias existentes para avaliação de perdas e ferramentas disponíveis para isto. A metodologia aqui aplicada desenvolve a avaliação das perdas através do balanço hídrico, utilizando o software gratuito desenvolvido pelo Banco Mundial (W-B Easy Calc - v1.17), e foi aplicada no sistema de abastecimento de água da Região Metropolitana de São Paulo (RMSP). Foram levantados os dados básicos de controle do sistema e realizados ensaios de campo, com medições de pressão e ensaios para determinação das perdas aparentes. Como estudo de caso, a metodologia foi aplicada em três setores de abastecimento da área central da RMSP, com características distintas. Os resultados do diagnóstico das perdas foram coerentes com as expectativas. Em função dos resultados, em cada setor deverá ser desenvolvida uma estratégia específica para a redução de perdas. / This study presents a discussion of a methodology for diagnosis and actions to reduce water losses, to assist in determining the profile of water losses, allowing a better prioritization of actions to combat and reduce real (physical) losses and apparent (commercial) losses. For developing the methodology, it was conducted an extensive bibliography review, where is presented the general concepts on water losses, its causes and events, indicators, actions to reduce, and a detailed discussion about the existing methodologies to assess losses and tools available for this. The applied methodology consists of an assessment of losses through the water balance, using free software developed by the World Bank (WB Easy Calc - v1.17) and it was applied in the water supply system in metropolitan region of Sao Paulo. To do this, it was necessary to collect basic data of system control and field tests, with pressure measurements and tests to determine apparent losses. As case study, the methodology was applied in three supply zones at the central area of metropolitan region of Sao Paulo, with different characteristics. The results of water losses diagnosis were consistent with expectations. With these results, a specific strategy should be developed in each sector for reducing losses.
|
Page generated in 0.0792 seconds