• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Communication Reliability in Network on Chip Designs

Kumar, Reeshav 2011 August 1900 (has links)
The performance of low latency Network on Chip (NoC) architectures, which incorporate fast bypass paths to reduce communication latency, is limited by crosstalk induced skewing of signal transitions on link wires. As a result of crosstalk interactions between wires, signal transitions belonging to the same flit or bit vector arrive at the destination at different times and are likely to violate setup and hold time constraints for the design. This thesis proposes a two-step technique: TransSync- RecSync, to dynamically eliminate packet errors resulting from inter-bit-line transition skew. The proposed approach adds minimally to router complexity and involves no wire overhead. The actual throughput of NoC designs with asynchronous bypass designs is evaluated and the benefits of augmenting such schemes with the proposed design are studied. The TransSync, TransSync-2-lines and RecSync schemes described here are found to improve the average communication latency by 26%, 20% and 38% respectively in a 7X7 mesh NoC with asynchronous bypass channel. This work also evaluates the bit-error ratio (BER) performance of several existing crosstalk avoidance and error correcting schemes and compares them to that of the proposed schemes. Both TransSync and RecSync scheme are dynamic in nature and can be switched on and off on-the-fly. The proposed schemes can therefore be employed to impart unequal error protection (UEP) against intra-flit skewing on NoC links. In the UEP, a larger fraction of the energy budget is spent in providing protection to those parts of the data being transmitted on the link which have a higher priority, while expending smaller effort in protecting relatively less important parts of the data. This allows us to achieve the prescribed level of performance with lower levels of power. The benefits of the presented technique are illustrated using an H.264 video decoder system-on-chip (SoC) employing NoC architecture. We show that for Akyio test streams transmitted over 3mm long link wires, the power consumption can be reduced by as much as 20% at the cost of an acceptable degradation in average peak signal to noise ratio (PSNR) with UEP.
2

SMART GRID COMMUNICATIONS

Asbery, Christopher W 01 January 2012 (has links)
Smart grid technologies are starting to be the future of electric power systems. These systems are giving the utilities detailed information about their systems in real time. One of the most challenging things of implementing smart grid applications is employing the communications into the systems. Understanding the available communications can help ease the transition to these smart grid applications. Many of the utility personnel are spending too much time trying to figure out which communication is better for their application or applications. So this thesis presents the different communication types available with discussing the different attributes in which these communication types are going to offer to the utility. Then these communication types are looked such that utilities can quickly understand how to approach the difficult task of obtaining the information from the different smart grid applications by the use of different communication options.
3

Design and Application of Wireless Machine-to-Machine (M2M) Networks

Zheng, Lei 24 December 2014 (has links)
In the past decades, wireless Machine-to-Machine (M2M) networks have been developed in various industrial and public service areas and envisioned to improve our daily life in next decades, e.g., energy, manufacturing, transportation, healthcare, and safety. With the advantage of low cost, flexible deployment, and wide coverage as compared to wired communications, wireless communications play an essential role in providing information exchange among the distributed devices in wireless M2M networks. However, an intrinsic problem with wireless communications is that the limited radio spectrum resources may result in unsatisfactory performance in the M2M networks. With the number of M2M devices projected to reach 20 to 50 billion by 2020, there is a critical need to solve the problems related to the design and applications in the wireless M2M networks. In this dissertation work, we study the wireless M2M networks design from three closely related aspects, the wireless M2M communication reliability, efficiency, and Demand Response (DR) control in smart grid, an important M2M application taking the advantage of reliable and efficient wireless communications. First, for the communication reliability issue, multiple factors that affect communication reliability are considered, including the shadowing and fading characteristics of wireless channels, and random network topology. A general framework has been proposed to evaluate the reliability for data exchange in both infrastructure-based single-hop networks and multi-hop mesh networks. Second, for the communication efficiency issue, we study two challenging scenarios in wireless M2M networks: one is a network with a large number of end devices, and the other is a network with long, heterogeneous, and/or varying propagation delays. Media Access Control (MAC) protocols are designed and performance analysis are conducted for both scenarios by considering their unique features. Finally, we study the DR control in smart grid. Using Lyapunov optimization as a tool, we design a novel demand response control strategy considering consumer’s comfort requirements and fluctuations in both the renewable energy supply and customers’ load demands. By considering those unique features of M2M networks in data collection and distribution, the analysis, design and optimize techniques proposed in this dissertation can enable the deployment of wireless M2M networks with a large number of end devices and be essential for future proliferation of wireless M2M networks. / Graduate / 0544 / flintlei@gmail.com
4

On Enforcing Reliability in Unidirectional WSNs: A MAC-Based Approach

Parsch, Philip 18 June 2019 (has links)
With the advent of Internet of Things (IoT), an increasing number of devices start exchanging information. This puts emphasis on wireless sensor networks (WSNs) to facilitate the interaction with the environment in varied application scenarios such as, for example, building and home automation among others. In this context, a reliable communication is usually required, i.e., it is necessary to guarantee that packets arrive within a specified maximum delay or deadline. In addition, since nodes are usually battery-powered and deployed in large numbers, they must be cost-effective and economize on energy, which requires nodes to have a low complexity. In this context, unidirectional communication, i.e., where nodes either send or receive data, seems to be an interesting solution. Since no elaborate feedback mechanisms such as carrier sensing, acknowledgments and retransmissions schemes are possible, complexity, costs, energy consumption and communication overhead are reduced in a considerable manner. On the other hand, however, packet loss becomes more likely making such networks strongly unreliable. To overcome this predicament, two MAC (Medium Access Control) protocols are proposed, namely DEEP and RARE. These consist in nodes transmitting their data as sequences of redundant packets with carefully selected inter-packet separations leading to robust transmission patterns that enable reliable communication. In the case of DEEP, full (100%) reliability can be guaranteed, i.e., there is no data loss, which is particularly useful for safety critical applications. RARE, on the other hand, is designed for applications that tolerate some amount of data loss and can be configured to a reliability <100%, i.e., to a certain probability on successful data delivery. This allows improving other aspects of the network, such as energy consumption, communication delays, etc. In contrast to solutions from the literature, the proposed protocols do not pursue a best-effort approach, but rather provide an analytical framework to assess the performance (i.e., reliability, energy consumption, etc.) of the network. In addition, the proposed protocols are based on more general models that allow describing arbitrary node types with different deadlines and packet lengths leading to a provable higher performance. These and other benefits are illustrated by the means of extensive numerical experiments and simulations based on the OMNeT++ framework.

Page generated in 0.1047 seconds