• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of cutting parameters in machining of Compacted Graphite Iron (CGI)

Berhane, Mulugeta January 2011 (has links)
Compacted Graphite Iron offers mechanical properties in between of gray cast iron and ductile iron. Thus,the material is seen as a hopeful alternative for engine cylinder blocks and heads satisfying environmentaland performance objectives. Nevertheless, CGI is more difficult to machine than conventional gray castiron due to the presence of MnS and thin wall section of probing high strength. This problem of CGI thenled to the initiation of large Optima Sweden project to study machinability and optimization of related toCGI.The thesis is centered on a study of tool life, cutting force and MRR with regards to machining parametersmainly feed rate and cutting speed for CGI milling. Tool life is measured; flank-wear is observed andcompared between several combinations of cutting parameters.Similarly cutting forces were measured using LMS software for full factorial design experiments. Extensivemachining experiments were carried out. Machining tests was done based on Design of Experiment (DoE)for high cutting data and lower data are performed separately. Comparison is made for tool life and cuttingforces. After data collection, analysis of tool life and force has been followed. Once the data is analyzedand checked its consistency. An approximate model is developed using MODDE software. Further, multiobjective optimization of tool life and Material removal rate (MRR) using cutting parameters mainly feedrate and cutting speed are investigated. Working on optimal parameters will allow for CGI is to becompetitive in manufacturing with gray CI, aluminum alloy, magnesium.Keywords: Compacted Graphite Iron (CGI), face milling, tool life, MRR, optimization, cutting force
2

Criteria for Machinability Evaluation of Compacted Graphite Iron Materials : Design and Production Planning Perspective on Cylinder Block Manufacturing

Berglund, Anders January 2011 (has links)
The Swedish truck industry is looking for new material solutions to achieve lighter engines with increased strength to meet customer demands and to fulfil the new regulations for more environmentally friendly trucks. This could be achieved by increasing the peak pressure in the cylinders. Consequently, a more efficient combustion is obtained and the exhaust lowered. This, however, exposes the engine to higher loads and material physical properties must therefore be enhanced. One material that could meet these demands is Compacted Graphite Iron (CGI). Its mechanical and physical properties make it ideal as cylinder block material, though there are drawbacks concerning its machinability as compared to other materials that are commonly used for the same purpose. Knowledge about machining of the material and its machinability is consequently inadequate. The main goal of this thesis is to identify and investigate the effect of the major factors and their individual contributions on CGI machining process behaviour. When the relationship between the fundamental features; machinability, material microstructure, and material physical properties, are revealed, the CGI material can be optimized, both regarding the manufacturing process and design requirements. The basic understanding of this is developed mainly through experimental analysis as, e.g., machining experiments and material characterization. The machining model presented in this thesis demonstrates the influence of material and process parameters on CGI machinability. It highlights machinability from both design and production planning perspectives. Another important objective of the thesis is an inverse thermo−mechanical FE model for intermittent machining of CGI. Here, experimental results obtained from a developed simulated milling method are used as input data, both to calibrate and validate the model. With these models, a deeper understanding is obtained regarding the way to achieve a stable process, which is the basis for future optimization procedures. The models can therefore be used as a foundation for the optimization of CGI component manufacturing. / <p>QC 20111121</p> / MERA - OPTIMA CGI / FFI - OPTIMA phase two

Page generated in 0.0425 seconds