• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 9
  • 9
  • 9
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 14
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Resposta fisiológica e molecular de dois genótipos de milho à limitação hídrica /

Queiroz, Rafaela Josemara Barbosa. January 2010 (has links)
Resumo: Nesta pesquisa foi avaliado o metabolismo de dois genótipos de milho (Zea mays L.) ao estresse hídrico e a correlação entre o teor de compostos responsáveis pela a aclimatação à limitação hídrica desses genótipos na germinação e no estádio vegetativo. Foram instalados dois experimentos. Inicialmente, um ensaio de germinação foi montado com o objetivo de verificar a tolerância de dois genótipos de milho, DKB 390 e DAS 2B710 ao déficit hídrico e de quantificar a prolina e a trealose nos tecidos endospermático e embrionário com intuito de descrever as suas funções fisiológicas na germinação. O segundo avaliou o ajustamento osmótico através das respostas bioquímicas e fisiológicas e moleculares de dois híbridos de milho sob duas disponibilidades hídricas no solo, em um latossolo vermelho. A partir desses resultados, verificou-se a tolerância destes híbridos a seca nesse estádio e o reflexo da expressão relativa de genes relacionados à síntese de solutos compatíveis em reposta à limitação hídrica no solo / Abstract: The metabolism of maize genotypes (Zea mays L.) to soil water avaibility and the correlation between the content of compounds responsible for this acclimation to water limitation of these genotypes at the germination and the silking stage. Two experiments were carried out. First, the germination test was evaluated the tolerance of two genotypes of maize, DKB 390 and DAS 2B710 to water available and also to quantify the proline and trehalose in the endosperm and embryonary axis tissues with the aim of describe their physiological functions in germination. The second assay it was examined the osmotic adjustment through biochemical and physiological responses of two hybrids growing in two soil water availability. The results of that experiment, checking the degree of tolerance of these hybrids and the reflection of the gene expression related to synthesis of these compatible solutes in response to soil water availability / Orientador: Jairo Osvaldo Cazetta / Coorientador: José Frederico Centurion / Banca: Manuel Pedro Salema Fevereiro / Banca: Carlos Alberto Martinez Y. Huaman / Banca: Janete Aparecida Desidério / Banca: David Ariovaldo Banzatto / Doutor
42

Precisão em posicionamento de manipulador não condutor acionado por músculos artificiais pneumáticos. / Positioning precision of a non conducting manipulator powered by pneumatic artificial muscles.

William Scaff 29 September 2015 (has links)
Com o crescimento populacional e a demanda energética crescente, a sociedade contemporânea têm enfrentado novos desafios para se manter. A aplicação da robótica em diversas áreas está cada vez mais comum, contribuindo para suprir estes novos desafios. Contudo, ainda existem casos em que o uso da robótica convencional é proibitivo, como em ambientes com campos elétricos e/ou magnéticos intensos, encontrado, por exemplo, nos sistemas de distribuição de energia elétrica e em máquinas de ressonância magnética. Isto porque os componentes condutores e ferromagnéticos utilizados podem oferecer perigos, causando queimaduras, curtos-circuitos e até lançamento de componentes. Em vista destas dificuldades, este trabalho propõe a construção de um manipulador robótico capaz de atuar nestas condições de campos elétricos e magnéticos elevados. Na construção de tal dispositivo, entretanto, é necessário o estudo da estrutura mecânica, dos atuadores, dos sensores e do controlador. No caso da estrutura mecânica e dos sensores, existem alternativas não condutoras disponíveis. O controlador geralmente é um microcomputador ou um dispositivo eletrônico, portanto condutor. Uma alternativa é manter o controlador distante e isolado do ambiente de risco. Mas para que esta hipótese seja testada, é necessário um atuador não condutor e não ferromagnético. Por isso, este trabalho propõe a construção de um atuador livre de materiais ferromagnéticos e condutores baseado no músculo artificial pneumático de McKibben. Músculos artificiais pneumáticos são disponíveis comercialmente, entretanto possuem materiais metálicos. Além disso, o controle preciso destes atuadores é dificultado pela sua alta não linearidade. Para verificar a viabilidade da aplicação de músculos artificiais em um manipulador não condutor, foram realizados testes com protótipos de músculos artificiais construídos com materiais compatíveis. O projeto e o dimensionamento do músculo artificial é abordado. Finalmente, é realizado o controle PID do músculo para avaliar sua controlabilidade e viabilidade de aplicação para tarefas de precisão em posicionamento. / With the population growth and the evergrowing energy dependency, the contemporary society have been facing new challenges to maintain yourself. The use of robotics in various fields is each time more common, contributing to surpass these new challenges. However, there are still cases where applying conventional robotics is prohibitive, such as in high electric and magnetic field environments, found, for example, in electric energy distribution systems and in magnetic resonance imaging machines. That\'s because conductive and ferromagnetic components can cause serious problems, like burns, short-cuts and even be throwed at high velocities. Knowing these difficulties, this work proposes the construction of a robotic manipulator capable of acting in these high electric and magnetic field environments. To build such manipulator, however, it\'s necessary to study the mechanic structure, the actuators, the sensors and the controller. In the case of the mechanic structure and sensors, there exists non-conductive and non-magnetic alternatives available. The controller is, in general, a microcomputer or an electric device, therefore, conductive. One alternative is to keep the controller far away from the risk environment. But to test this hypothesis, it\'s necessary to have a non-conductive and non-ferromagnetic actuator. Because of that, this work proposes the construction of an actuator free of conductive and magnetic materials, based on the McKibben pneumatic artificial muscle. Pneumatic artificial muscles are available commercially, but they have metallic components. Besides, the accurate control of these actuators is difficult for their high non-linearities. To verify the viability of applying artificial muscles on a non-conductive manipulator, tests were conducted with artificial muscle prototypes built with compatible materials. The design and dimensioning of the artificial muscle are covered. Finally, the PID controller is implemented to evaluate the muscle\'s controllability and its viability for tasks that need position accuracy.
43

The use of various telephones by individuals fitted with a Cochlear implant

Honck, Louise 13 January 2005 (has links)
The aim of this study was to determine which land line telephone and/or mobile/cellular telephone will enable an individual with a cochlear implant to achieve the best speech discrimination scores. Objective measurements and the subjective experience of the individual were used. The literature review provided an overview on the telephone abilities of individuals fitted with cochlear implants. In this study three factors, the quality of the telephone, the speaker's voice and different speech-coding strategies, were discussed and examined, in order to explore and explain the technical difficulties commonly experienced by this population regarding the successful use of a telephone. Data regarding various telephones and the influence different voice-types has on the telecommunication abilities were obtained through the execution of the methodology. Telephone abilities on five different telephones were assessed. Ten participants, four females and six males, fitted with the ESPrit 22, ESPrit 24 and ESPrit 3G Nucleus cochlear implants were used. The Central Institute for the Deaf (CID) open-set sentences were used and data was statistically analysed using a split plot design. Significant differences between different types of telephones were found. The results also suggested that different voice types have an impact on these individual's ability to use a telephone independently. Possible reasons such as different coding strategies, technical interference and quality of voices were discussed. Recommendations for developing rehabilitation programs, to obtain successful telephone competence for these individuals, were made and discussed. The study aimed to empower technologists working in this field to actively take note of the need for development and continuous research regarding various telephones. These telephones should enable more individuals fitted with cochlear implants to receive the maximum speech discrimination with the minimum interference. The findings of this study should encourage future research regarding this topic. A more extensive range of telephones should be used and compared to the findings in this study. / Dissertation (M (Communication Pathology))--University of Pretoria, 2006. / Speech-Language Pathology and Audiology / Unrestricted
44

Regulation of photosynthesis in sorghum in response to drought

Ogbaga, Chukwuma January 2014 (has links)
Changing climate in combination with growing world populations mean that there is growing need for plants to be grown on land that is currently considered marginal for agriculture. Sorghum is a C4 plant that serves as an important food crop in Africa and India. It is also known to be highly drought tolerant but the mechanisms responsible for this tolerance are unclear. The overall aim of this study was to understand the drought tolerance mechanisms that enable the plant to maintain leaf function for a long time during water deficit. In Chapter 2 of this thesis, I studied the underlying physiological mechanisms for tolerating drought in two sorghum varieties with differing degrees of drought tolerance compared to a closely related species, Zea mays. During progressive drought, the more tolerant sorghum variety Samsorg 17 maintained net CO2 assimilation and photochemistry longest relative to the less tolerant Samsorg 40 and Zea mays. Differences were also seen in stomatal aperture, stomatal density, total chlorophyll content, chl a:b and A/Ci curve responses with maize more affected than the sorghum varieties. In Chapter 3, I identified novel drought tolerance mechanisms in the sorghum varieties. The less tolerant Samsorg 40 lost PsbA (D1) and Rubisco proteins and reengineered its photosynthetic apparatus to accumulate amino acids and sugars in order to maximise survival under drought. Samsorg 17 maintained photosynthetic proteins notably PsbA (D1) and Rubisco and accumulated high constitutive sugar content allowing for the maintenance of transpiration and photosynthesis. The two sorghum varieties had strikingly contrasting approaches of tolerating drought as demonstrated in Chapter 3. In Chapter 4, the aim was to characterise biochemical and metabolic changes that occur in response to drought. In particular, to identify sugars that are accumulated constitutively in Samsorg 17 and nitrogen sinks for lost N in Samsorg 40. My findings indicated a contrasting response in terms of sugar content in Samsorg 17 but support for amino acids as N sinks in Samsorg 40 as reported earlier. Sugars, sugar alcohols, lipids, organic acids, heat shock proteins and dehydrins were generally higher or more induced in Samsorg 17 relative to Samsorg 40. Samsorg 40 rather made amino acids. The implications of my findings and future work arising from this study were discussed in detail in the final chapter. In conclusion, in this thesis, it was demonstrated that closely related plants can have mechanistically different physiological and biochemical mechanisms for responding to drought.
45

Rating the Learning Environment for Brain Compatible Elements

Evanshen, Pamela 01 September 2004 (has links)
No description available.
46

Integrated Thematic Instruction and the Brain Compatible Classroom

Evanshen, Pamela 01 June 2004 (has links)
No description available.
47

Assessing Benefits and Barriers to Deployment of Solar Mini Grids in Ghanaian Rural Island Communities

Nuru, Jude T. 28 April 2020 (has links)
No description available.
48

Community Interactions and Water as Drivers of Soil Microbial Communities

Kakumanu, Madhavi Latha 06 August 2011 (has links)
Understanding the response of soil microbial communities to various environmental stresses is of current interest, because of their pivotal role in nutrient cycling, soil organic matter mineralization and influence on plant growth. Determining the affect of several biotic and abiotic factors on soil microbial communities is the overall objective of the study. The specific goals are to determine 1) the response of microbial communities to water deficit in soil and 2) how the presence of a rich biotic community determines the direction of microbial community development in cultures. Both goals are novel and unique contributions to understanding microbial ecology in soil. Dynamics in water potentials due to drying and rewetting of soil impose significant physiological challenges to soil microorganisms. To cope with these fluctuations, many microorganisms alter the chemistry and concentration of their cytoplasmic contents. The aim of this research is to understand how the microbial biomass and their cytoplasm change in response to water potential deficits under in situ soil conditions. To address this objective we characterized intracellular and extracellular metabolites in moist, dry and salt stressed soils. Our results provided the first direct evidence that microbial communities in soil in situ utilize sugars and sugar alcohols to cope with low water potential. While the cultivation and isolation of microorganisms is essential to completely explore their physiology and ecology, 99% of soil microbes resist growing in cultures. Presence of very unnatural conditions in the culture plates was considered as main reason for low cultivability. Thus, a culture-based study was conducted whereby microorganisms were grown in association with their native habitat with an objective of mimicking native conditions to promote the growth of previously uncultivated microorganisms. Moreover, the importance of biotic communities (microbe-microbe) and abiotic soil effects were assessed on bacterial growth. Our results strongly indicate that the presence of living microbial community in the vicinity of the target culture resulted in the cultivation of novel members of rare bacterial taxa from phyla Verrucomicrobia, Bacteroidetes, Proteobacteria, and Planctomycetes. These results emphasize the need to develop new culturing methods to tap the hidden microbial potential for emerging anthropogenic needs.
49

Testing and Validation of a Prototype Gpgpu Design for FPGAs

Merchant, Murtaza 01 January 2013 (has links) (PDF)
Due to their suitability for highly parallel and pipelined computation, field programmable gate arrays (FPGAs) and general-purpose graphics processing units (GPGPUs) have emerged as top contenders for hardware acceleration of high-performance computing applications. FPGAs are highly specialized devices that can be customized to a specific application, whereas GPGPUs are made of a fixed array of multiprocessors with a rigid architectural model. To alleviate this rigidity as well as to combine some other benefits of the two platforms, it is desirable to explore the implementation of a flexible GPGPU (soft GPGPU) using the reconfigurable fabric found in an FPGA. This thesis describes an aggressive effort to test and validate a prototype GPGPU design targeted to a Virtex-6 FPGA. Individual design stages are tested and integrated together using manually-generated RTL testbenches and logic simulation tools. The soft GPGPU design is validated by benchmarking the platform against five standard CUDA benchmarks. The platform is fully CUDA-compatible and supports direct execution of CUDA compiled binaries. Platform scalability is validated by varying the number of processing cores as well as multiprocessors, and evaluating their effects on area and performance. Experimental results show as average speedup of 25x for a 32 core soft GPGPU configuration over a fully optimized MicroBlaze soft microprocessor, accentuating benefits of the thread-based execution model of GPUs and their ability to perform complex control flow operations in hardware. The testing and validation of the designed soft GPGPU system serves as a prerequisite for rapid design exploration of the platform in the future.
50

Physiological Assessment of Chenopodium quinoa to Salt Stress

Morales, Arturo Jason 17 July 2009 (has links) (PDF)
The physiological responses to salt stress were measured in Chenopodium quinoa. In a greenhouse experiment, salt water was applied to the quinoa varieties, Chipaya and KU-2, and to the model halophyte Thellungiella halophila to assess their relative responses to salt stress. Height and weight data from a seven-week time course demonstrated that both cultivars exhibited greater tolerance to salt than T. halophila. In a growth chamber experiment, three quinoa cultivars, Chipaya, Ollague, and CICA 17 were hydroponically grown and physiological responses were measured with four salt treatments. Tissues collected from the growth chamber treatments were used to obtain leaf succulence data, tissue ion concentrations, compatible solute concentrations, and RNA for real-time PCR. Stomatal conductance and fresh weight were measured to determine the degree of stress and recovery. The expression profiles of SOS1, NHX1, and TIP2, genes involved in salt stress, showed constitutive expression in root tissue and up-regulation in leaf tissue in response to salt stress. These data suggest that quinoa tolerates salt through a combination of exclusion and accumulation mechanisms.

Page generated in 0.2809 seconds