Spelling suggestions: "subject:"complemented subspace"" "subject:"omplemented subspace""
1 |
A forma fraca do teorema de peano em espaços de banach de dimensão infinitaMendes, Abraão Caetano 12 August 2015 (has links)
Submitted by Kamila Costa (kamilavasconceloscosta@gmail.com) on 2015-09-02T13:30:29Z
No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:31:26Z (GMT) No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-09-16T15:35:33Z (GMT) No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5) / Made available in DSpace on 2015-09-16T15:35:34Z (GMT). No. of bitstreams: 1
Dissertação - Abraão C Mendes.pdf: 596466 bytes, checksum: 828e2e3d4596502c864741954a15b161 (MD5)
Previous issue date: 2015-08-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / For a long time one was looking for an answer of Peano’s theorem in infinitedimensional
Banach spaces. In 1974, Godunov proved that the Peano’s theorem holds
in a Banach space X if and only if X has finite dimension. In the following, he turned all
his attention to the weak form of Peano’s theorem in the infinite-dimensional case. In
2003, Shkarin proved that if X is a Banach space containing a complemented subspace
with an unconditional Schauder basis, then the weak form of Peano’s theorem does not
hold. In this work we try to show all details of the proof. / Por muito tempo procurou-se responder à questão da validade (ou não-validade)
do Teorema de Peano em espaços de Banach de dimensão infinita. Mas, em 1974,
Godunov mostrou que o Teorema de Peano é válido em um espaço de Banach X se,
e somente se, X tem dimensão finita (veja [13]). Voltou-se, então, a atenção para a
Forma Fraca do Teorema de Peano no caso de dimensão infinita. Em 2003, Shkarin
mostrou que se X é um espaço de Banach contendo um subespaço complementado
com base de Schauder incondicional, então a Forma Fraca do Teorema de Peano não é
válida (veja [14]). Veremos os detelhes deste resultado ao longo deste trabalho.
|
2 |
Subespaços complementados de espaços de Banach clássicos / Complemented subspaces of classical Banach spacesMelendez Caraballo, Blas, 1988- 27 August 2018 (has links)
Orientador: Jorge Tulio Mujica Ascui / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T12:08:37Z (GMT). No. of bitstreams: 1
MelendezCaraballo_Blas_M.pdf: 1140173 bytes, checksum: 61bc3f801fdfc8946dd6852692a39bfd (MD5)
Previous issue date: 2015 / Resumo: Em 1960, Pelczynski [1] provou que, se X é um dos espaços c0 ou lp, com p número real maior ou igual do que um. Então todo subespaço complementado de dimensão infinita de X é isomorfo a X. Outro resultado clássico de Pelczynski [1] afirma que se p é um número real maior do que um, então o espaço Lp[0,1] contém um subespaço complementado isomorfo a l2. Nosso objetivo é estudar os resultados deste tipo, e introduzir alguns problemas abertos. BIBLIOGRAFIA [1] A. Pelczynski, Projections in certain Banach spaces, Studia Methematica, 19 (1960), pág. 209-228 / Abstract: In 1960, Pelczynski [1] showed that if X is one of the spaces c0 or lp, p real number greater than or equal to one. Then each infinite dimensional subspace complemented in X is isomorphic to X. Another classical result of Pelczynski [1] states that if p is a real number greater that one, then the space Lp[0,1] contains a complemented subspace isomorphic to l2. Our aim is to study results of this kind, and to introduce some open problems. BIBLIOGRAFIA [1] A. Pelczynski, Projections in certain Banach spaces, Studia Methematica, 19 (1960), pág. 209-228 / Mestrado / Matematica / Mestre em Matemática
|
Page generated in 0.0987 seconds