• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of a Network Model for Complex Fenestration Systems

Rogalsky, Christine Jane January 2011 (has links)
In the fight to reduce carbon emissions, it is easy to see the necessity of reducing energy consumption. Buildings consume a large amount of energy, and have significant potential for energy savings. One tool for realising these potential savings is building simulation. To be able to use building simulation, accurate models for windows are needed. The models include individual layer models, to determine the solar and longwave radiative behaviours, as well as whole-system models to determine heat flows through the various layers of fenestration systems. This thesis looks at both kinds of models for incorporating windows into building simulations. A new network whole-system model is implemented, and integrated into the California Simulation Engine building simulation software. This model is also used as the calculation engine for a stand-alone rating tool. Additionally, a measurement technique used to measure off-normal solar properties of drapery materials, as part of developing shading layer models, is investigated using a Monte Carlo simulation. The network model uses a very general resistance network, allowing heat transfer between any two layers in a complex fenestration system (CFS), whether they are adjacent or not, between any layer and the indoor or outdoor side, or between the indoor and outdoor sides, although this last case is unlikely. Convective and radiative heat transfer are treated using the same format, resulting in increased stability. This general resistance network is used to calculate indices of merit for the CFS using numerical experiments. This approach requires fewer iterations to solve than previous solution methods, and is more flexible. The off-normal measurement technique which was investigated used a sample holder inserted into an integrating sphere. This is a non-standard way of using an integrating sphere, and early analyses did not provide conclusive information as to the effect of the sample holder. A Monte Carlo analysis confirmed the amount of beam attenuation as being 20% for the sample holder used in the experiments. Also con firmed was the effectiveness of dual-beam integrating spheres in correcting for the presence of a sample holder. The stand-alone rating tool which uses the general network framework, incorporates an easy-to-use visual interface. This tool models multiple types of shading layers with no restrictions on how they are combined. Users can easily change any one layer to see the effects of different arrangements. Users may specify any combination of indoor and outdoor ambient and mean radiant temperatures, insolation, and beam/diffuse split.
2

Application of a Network Model for Complex Fenestration Systems

Rogalsky, Christine Jane January 2011 (has links)
In the fight to reduce carbon emissions, it is easy to see the necessity of reducing energy consumption. Buildings consume a large amount of energy, and have significant potential for energy savings. One tool for realising these potential savings is building simulation. To be able to use building simulation, accurate models for windows are needed. The models include individual layer models, to determine the solar and longwave radiative behaviours, as well as whole-system models to determine heat flows through the various layers of fenestration systems. This thesis looks at both kinds of models for incorporating windows into building simulations. A new network whole-system model is implemented, and integrated into the California Simulation Engine building simulation software. This model is also used as the calculation engine for a stand-alone rating tool. Additionally, a measurement technique used to measure off-normal solar properties of drapery materials, as part of developing shading layer models, is investigated using a Monte Carlo simulation. The network model uses a very general resistance network, allowing heat transfer between any two layers in a complex fenestration system (CFS), whether they are adjacent or not, between any layer and the indoor or outdoor side, or between the indoor and outdoor sides, although this last case is unlikely. Convective and radiative heat transfer are treated using the same format, resulting in increased stability. This general resistance network is used to calculate indices of merit for the CFS using numerical experiments. This approach requires fewer iterations to solve than previous solution methods, and is more flexible. The off-normal measurement technique which was investigated used a sample holder inserted into an integrating sphere. This is a non-standard way of using an integrating sphere, and early analyses did not provide conclusive information as to the effect of the sample holder. A Monte Carlo analysis confirmed the amount of beam attenuation as being 20% for the sample holder used in the experiments. Also con firmed was the effectiveness of dual-beam integrating spheres in correcting for the presence of a sample holder. The stand-alone rating tool which uses the general network framework, incorporates an easy-to-use visual interface. This tool models multiple types of shading layers with no restrictions on how they are combined. Users can easily change any one layer to see the effects of different arrangements. Users may specify any combination of indoor and outdoor ambient and mean radiant temperatures, insolation, and beam/diffuse split.
3

Optical and thermal performance of complex fenestration systems in the context of building information modelling / Performances optiques et thermiques des systèmes de fenestration complexes dans le contexte du BIM

Boudhaim, Marouane 26 September 2018 (has links)
L'efficacité énergétique du bâtiment occupe une place importante dans les projets de construction. La façade, intermédiaire entre l'environnement et l'intérieur, joue un rôle clé pour déterminer les performances énergétiques du bâtiment. Les systèmes de fenestration complexes sont généralement utilisés pour améliorer son efficacité. L'étude des performances de la façade inclut généralement la consommation d'énergie, l'éclairage naturel et les aspects de confort visuel et thermique. Les efforts récents s'orientent vers l'utilisation de modèles intelligents tels que le Building Information Modeling. CFS pourraient être facilement comparées dans la phase de conception du bâtiment afin d'optimiser ses performances. Nous présentons une méthodologie pour transformer le modèle architectural du BIM en modèle énergétique ainsi que des modèles optique et thermique du CFS compatibles avec le BIM. Ces modèles sont validés par une comparaison avec des données expérimentales et les normes actuelles. / The energy efficiency of the building occupies an important place in construction projects. The facade plays a key role in determining the performance of the building. Complex fenestration systems (CFS) are therefore generally used to improve its efficiency. The facade's performance evaluation usually includes energy consumption, natural lighting, visual and thermal comfort aspects in order to choose the optimal CFS. Recent efforts have focused on using rich models such as Building Information Modeling (BIM). These models provide an opportunity for automation and cost savings. Several CFS models could easily be compared to optimize the building's performance. In this thesis, we present a methodology to transform the architectural model of the BIM into a Building Energy Model compatible with several simulation software. We also present optical and thermal models compatible with BIM. These models are validated by comparison with experimental data and current standards.

Page generated in 0.1526 seconds