• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des installations de génie climatique en environnement de simulation graphique Méthodologie de description et réalisation d'une bibliothèque de modèles composants

Husaunndee, Ahmad Mudassir Ibn 02 1900 (has links) (PDF)
Les outils de simulation numérique occupent une place prépondérante dans les études en physique du bâtiment. La démarche de conception énergétique optimale des bâtiments, qui résulte de l'épuisement des ressources énergétiques et du souci de préservation de l'environnement, n'a fait qu'amplifier leur utilisation. Ces outils, si répandus dans la communauté scientifique, n'ont pas encore trouvé leur place parmi les professionnels. L'enjeu est donc de transférer ces outils vers les praticiens. En parallèle, il faut s'assurer de leur formation dans le domaine de la simulation. Diverses actions, à travers des associations d'ingénieurs ou d'industriels, des projets européens ou de l'Agence Internationale de l'Énergie, sont actuellement menées pour faciliter ce transfert d'outils de simulation. Le travail présenté dans ce mémoire se positionne dans ce cadre. Il cherche à faciliter l'utilisation de la simulation pour les études des systèmes de régulation associés aux installations de génie climatique. Il s'adresse dans un premier temps aux industriels de matériels de régulation pour la conception de nouveaux produits et aussi pour définir des stratégies de régulation. La démarche de modélisation classique se focalise dans la plupart des cas, sur la description d'un problème, sa représentation mathématique et sa résolution numérique. La méthode décrite ici intègre la notion de compréhension du modèle par un utilisateur dans cette démarche de modélisation. Le modélisateur doit garder à l'esprit le profil des utilisateurs potentiels de son modèle de système ou de composant et évaluer leur niveau de compétence. La théorie du Système Général est utilisée pour la description globale du comportement thermique dans le bâtiment. Un Système Bâtiment "générique" adapté aux études sur la régulation résulte de cette description. Dans ce souci de compréhension, les interactions entre les éléments du Système Bâtiment sont définies en utilisant des terminologies technologiques. Ainsi on fait intervenir de fluides caloporteurs (air ou eau), de bus de communication ou de données météorologiques au lieu de caractériser les interactions uniquement en transfert de chaleur et de masse ou en informations. La description accorde une grande importance à l'implémentation informatique de ce Système Bâtiment. Elle fait appel aux techniques de la programmation graphique pour mettre en valeur le caractère sémantique inhérent aux environnements graphiques pour les assemblages de systèmes virtuels identiques aux installations réelles. Il est appliqué dans un environnement de simulation graphique du commerce qui utilise le concept de modularité. L'environnement graphique sert aussi à améliorer la compréhension des modèles des éléments du Système Bâtiment. Le travail propose une méthode de structuration des modèles pour mettre en évidence le schéma fonctionnel. La notion de modularité, couramment utilisée pour la description de système, est introduite au niveau de chaque élément. Le problème du paramétrage des modèles est aussi abordée. La complexité du paramétrage est souvent soulevée comme un obstacle à l'utilisation des outils de simulation par des praticiens. Les modèles proposés doivent avoir une version avec des paramètres "facilement disponibles". Le modèle doit être utilisable même s'il n'est pas le plus performant. Dans certains cas, des données de sources typologiques ou conventionnelles sont proposées. L'environnement graphique permet de fournir différents niveaux d'interface utilisateur. Il est ainsi possible de hiérarchiser les paramètres selon leur complexité. De manière générale, l'architecture ouverte de la programmation graphique permet à un utilisateur de parcourir les modèles selon ses besoins et ses compétences. Il peut le faire tant au niveau du système qu'au niveau des composants. Pour tirer un maximum de profit de cette caractéristique, le modélisateur doit structurer son modèle au cours de son développement dans l'environnement graphique. En même temps il faut être conscient qu'un usage excessif de la programmation graphique peut compliquer la compréhension. Le modélisateur doit constamment déterminer l'utilité de la programmation graphique et le passage à une programmation textuelle. Ce travail se termine par la réalisation d'une bibliothèque de modèles de composants de génie climatique dans un environnement de simulation existant (MATLAB/SIMULINK). Le transfert de la simulation en thermique du bâtiment vers des spécialistes de la régulation et des automatismes se fait aussi par le biais de cet environnement qui est très connu par cette catégorie de professionnels.
2

Développement d’outils numériques pour l'audit énergétique des bâtiments / Development of numerical tools for building energy audit

Brouns, Jordan 01 December 2014 (has links)
Le secteur du bâtiment représente aujourd'hui près de 45% de la facture énergétique nationale, et le parc des bâtiments existants se renouvelle lentement. L'audit énergétique est un outil d'aide à la décision permettant d'améliorer la performance des bâtiments en proposant des scénarios de rénovation adaptés. Cependant, les méthodes d'audit actuelles ne parviennent pas à saisir réellement les propriétés thermiques des bâtiments et les propositions de rénovation peuvent être inadaptées. Nous proposons une méthode innovante d'audit énergétique des bâtiments qui permet de réduire fortement les incertitudes sur les paramètres et la réponse thermique du modèle. Elle diffère des méthodes classiques par son protocole opératoire et ses outils de résolution numérique. En plus du recueil des scénarios d'usage, des caractéristiques thermiques des systèmes et du bâti, et des conditions climatiques, elle exploite l'information contenue dans la mesure de l'état thermique, composé des températures des pièces et des températures de surfaces de certaines parois et des émetteurs. Ces données alimentent un problème inverse d'identification de paramètres. L'utilisation d'un modèle aux EDP nous donne accès aux outils du contrôle optimal, et notamment à la méthode de l'état adjoint. Avec ce formalisme, le problème inverse se réécrit comme un problème d'optimisation non linéaire de calibration du modèle thermique. Les paramètres inconnus sont constitués des paramètres les plus influents : la capacité et la conductivité thermiques des parois, les caractéristiques des émetteurs, la transmittance des fenêtres et le débit de renouvellement d'air moyen. Nous proposons deux variantes de la méthode, que nous appliquons sur un cas d'étude numérique. La première nécessite les données de chaque puissance individuelle fournie aux émetteurs, et la seconde utilise une mesure globale de production de chaleur. L'approche est étudiée numériquement : le modèle thermique sert à la fois pour la génération des mesures et pour l'identification. Une fois les mesures de l'état thermique synthétisées, les paramètres retenus sont perturbés suivant les incertitudes classiques du bâtiment. Nous éprouvons la méthode sur un échantillon de tirages aléatoires, engendrant autant d'initialisations pour l'algorithme, afin de calculer l'incertitude de la méthode. L'allègement du protocole opératoire pour la seconde variante se traduit toutefois par une baisse de la précision de l'identification. Nous analysons la robustesse de la méthode lorsque les conditions climatiques de l'audit changent, que le bruit des capteurs de l'état thermique augmente, et pour de fortes incertitudes initiales des paramètres. Nous montrons que la méthode est stable par rapport au bruit des capteurs et que l'incertitude sur l'état thermique du bâtiment est globalement réduite. Afin d'améliorer la prise en compte de l'aéraulique, nous proposons une technique permettant de discriminer deux sources ayant des dynamiques différentes : l'une constante par morceaux, l'autre régulière dans le temps. La méthode résout un problème inverse prenant en compte la régularité des fonctions par projection. Cet outil est validé sur une étude expérimentale, dont les résultats démontrent la robustesse au bruit de mesure. Ce résultat constitue un jalon dans la volonté de s'affranchir de la contrainte de maîtrise de scénarios d'usage de la méthode d'audit. Enfin, nous proposons un formalisme inverse pour caractériser les propriétés thermiques d'une structure 3D à partir de mesures de température sur une partie de sa frontière. L'outil permet de reconstruire différentes formes et natures de défauts. Il pourrait trouver des débouchés dans la caractérisation de défauts d'isolation ou de ponts thermiques / The building sector currently accounts for nearly 45% of the national energy bill, and the existing buildings are slowly renewed. Energy audit is a tool for decision support to improve building performance by providing suitable renovation strategies. However, actual energy audit methods fail to completely determine the building thermal properties, and the proposed retrofit strategies may be inappropriate. We propose an innovative energy audit method which significantly reduces the uncertainties on the building thermal parameters and the thermal state. It differs from conventional methods by its operating protocol and its numerical resolution. In addition to the collection of use scenarios, thermal characteristics of built and systems, and weather conditions, it exploits the information embedded in the measurement of the thermal state, composed of the temperatures of the rooms, and the surface temperature of walls and heating devices. This data feed an inverse problem of parameters identification. Using a model for EDP gives us a direct access to the tools of the optimal control theory, including the adjoint state method. With this formalism, the inverse problem can be rewritten as a nonlinear optimization problem of the calibration of the thermal model. The unknown parameters consist of the most influential parameters of the building thermal model: the heat capacity and the thermal conductivity of the walls, the heaters characteristics, the windows transmittance and the mean rate of air renewal. We propose two alternatives to the method. The first requires the data of each individual power provided to heating device, and the second uses a global measure of the heat production. We apply them on a numerical case study: the thermal model is used for both the measures generation and the parameters identification. Once the thermal state measurements are synthesized, the selected parameters are disturbed by conventional uncertainties of the building. We investigate the method on a randomly generated sample, which gives us as many starting values for the algorithm. This allows to compute the uncertainty of the method. Reducing the operating protocol for the second alternative results in a decrease of the identification accuracy. We analyze the robustness of the method when the weather conditions of the audit change, when the sensor noise of the thermal state increases, and when we deal with strong initial parameter uncertainties. We show that the method is stable compared to the sensor noise and the thermal response of the rooms is generally well reconstructed. In order to improve the ventilation consideration, we then propose a technique to distinguish two thermal sources whose dynamics differ: one piecewise constant, and one smooth in time. The method is to solve an inverse problem, taking into account the temporal regularity of functions by a projection step. This tool has been validated on an experimental study, and the results demonstrate robustness to measurement noise. This result is a milestone in the will to overcome the constraint of precisely describing to use scenarios in the audit methodology. Finally, we propose an inverse formalism to characterize the thermal properties of a 3D structure from temperature measurements on a part of its boundary. The tool allows the reconstruction of various types and forms of internal defects. He could find opportunities in the thermal building diagnostics for characterizing insulation defects or thermal bridges
3

Representation of thermal building simulation in virtual reality for sustainable building / Représentation de simulation thermique en réalité virtuelle pour la construction durable

Nugraha Bahar, Yudi 15 April 2014 (has links)
La sobriété énergétique du bâti devient aujourd’hui un élément clé en phase de conception. L’intégration en amont d’outils numériques, notamment la réalité virtuelle (RV). Nous a conduit, dans cette recherche, à nous concentrer sur les résultats de simulations thermiques visualisées dans un environnement virtuel. La contribution est portée sur la représentation et la perception dans un EV de ces données issues de simulation. Nous nous limitons à la caractérisation de l’efficacité énergétique en processus de conception. Cette étude vise la prédiction des performances thermiques dans des systèmes de réalité virtuelle. Les problématiques de formats de données et de flux de travail entre la modélisation classique CAO (Conception Assistée par Ordinateur), les simulations thermiques, et la visualisation immersive sont également traitées. Il existe plusieurs outils logiciels dédiés à la représentation de simulations thermiques en EV et le premier enjeu de ces travaux fut de sélectionner l’outil approprié. De nombreux modeleurs CAO, logiciels de simulation thermique et outils de RV sont disponibles ; ils diffèrent notamment par leurs approches (fonctionnalités et environnement logiciel). La problématique d’interopérabilité (formats d’échange entre les outils logiciels) requiert de bâtir un flux de travail structuré. Les difficultés d’intégration entre outils CAO et outils de simulation, et les barrières au transfert vers des systèmes de réalité virtuelle sont également décrits. Il est apparu pertinent d'utiliser le Building Information Model (BIM) de plus en plus utilisé parmi les acteurs de l’architecture, ingénierie et construction (AIC). Puis nous avons poursuivi par l’évaluation des tendances actuelles en matière de représentation de données thermiques issues de simulation dans un EV, par la création de méthode de transfert de données de sorte à les intégrer au flux de travail. Après un état de l’art sur la simulation thermique et une évaluation des travaux connexes, nous décrivons l'application, la méthode et les outils pour parvenir à nos objectifs. Une proposition de procédé de transfert de données et de présentation de données en EV est formulée et évaluée. Le flux d’échanges de données s’effectue en trois phases, de sorte à optimiser les passages entre la CAO, le calcul thermique et la réalité virtuelle. La représentation des données dans l’EV est réalisée grâce à une visualisation immersive et interactive. Une expérimentation a été conduite de sorte à évaluer des sujets : Le scénario consistait en une visualisation interactive de données thermiques selon 4 modalités en environnement virtuel. L’interface développée pour l’interaction a été voulue intuitive et conviviale. L’application contient un modèle 3D réaliste du projet (salle Gunzo) dans deux configurations : état actuel et état rénové. Les données thermiques sont restituées selon plusieurs métaphores de représentation. L’expérimentation développe une approche qui associe au scénario de rénovation virtuelle une configuration matérielle/logicielle. Les résultats obtenus se concentrent sur la visualisation, l'interaction et le retour subjectif des utilisateurs. Quatre métaphores de visualisation sont testées et leur évaluation porte notamment sur deux critères : leurs capacités à restituer les résultats de simulation thermique ; le degré d’interaction et la perception de l’utilisateur des impacts de ses actions. L’évaluation subjective révèle les préférences des utilisateurs et montre que les métaphores de représentation ont une influence sur la précision et l’efficience de l’interprétation des données. Ces travaux montrent que les techniques de représentation et de visualisation de données de simulation ont un effet sur la pertinence de leur interprétation. La méthode décrite spécifie les modalités de transfert de la donnée depuis la phase conception jusqu’aux outils et systèmes de RV. Sa souplesse lui permet d’être transposée à tout type de projet (…) / The importance of energy efficiency as well as integration of advances in sustainable buildingdesign and VR technology have lead this research to focus on thermal simulation results visualized in avirtual environment (VE). The emphasis is on the representation of thermal building simulation (TBS)results and on the perception of thermal data simulated in a VE. The current application of the designprocess through energy efficiency in VR systems is limited mostly to building performance predictionsand design review, as the issue of the data formats and the workflow used for 3D modeling, thermalcalculation and VR visualization.Different applications and tools involved to represent TBS in VE are become the challenge ofthis work. Many 3D modeller, thermal simulation tools and VR tools are available and they are differ intheir function and platform. Issues of data format exchange, appropriate tools and equipments from thissituation require an interoperability solution that needs to be structured in a workflow method.Significances and barriers to integration design with CAD and TBS tools are also outlined in order totransfer the model to VR system. Therefore, the idea then is to use Building Information Model (BIM)extensively used in Architecture, Engineering and Construction (AEC) community. It then continued toevaluate the current trends for TBS representation in VE, to create data transfer method, and tointegrate them in the workflow. After a review in thermal simulation and an evaluation of related works,we specify the application, method and tools for our objectives.An application of a method of data transfer and presentation of data in VE are formulated andtested. This effort conduct using a specific data workflow which performed the data transfer through 3phases. This relies on the smooth exchange of data workflow between CAD tools, thermal calculationtools and VR tools. Presentation of data in VE is conducted through immersive visualization andintuitive interaction. An experiment scenario of a thermal simulation in VR system was created tointeractively visualize the results in the immersion room and tested by some respondents. The systeminclude with friendly interface for interaction. It presents a realistic 3D model of the project (Gunzoroom) in existing condition and renovated version, and their TBS results visualized in somevisualization metaphor. In the experiment, the method which bundled in an application brings togetherwithin a couple of virtual scenario and a software/hardware solution. The obtained results concentrateon visualization, interaction and its feedback. Some visualization metaphor are tested and evaluated topresent more informative TBS results where the user can interact and perceive the impact of theiraction.Evaluation of the application prototype showed various levels of user satisfaction, andimprovements in the accuracy and efficiency of data interpretation. The research has demonstrated it ispossible to improve the representation and interpretation of building performance data, particularly TBSresults using visualization techniques. Using specific method, the data flow that starts from the designprocess is completely and accurately channelled to the VR system. The method can be used with anykind of construction project and, being a flexible application, accepts new data when necessary,allowing for a comparison between the planned and the constructed.
4

Optical and thermal performance of complex fenestration systems in the context of building information modelling / Performances optiques et thermiques des systèmes de fenestration complexes dans le contexte du BIM

Boudhaim, Marouane 26 September 2018 (has links)
L'efficacité énergétique du bâtiment occupe une place importante dans les projets de construction. La façade, intermédiaire entre l'environnement et l'intérieur, joue un rôle clé pour déterminer les performances énergétiques du bâtiment. Les systèmes de fenestration complexes sont généralement utilisés pour améliorer son efficacité. L'étude des performances de la façade inclut généralement la consommation d'énergie, l'éclairage naturel et les aspects de confort visuel et thermique. Les efforts récents s'orientent vers l'utilisation de modèles intelligents tels que le Building Information Modeling. CFS pourraient être facilement comparées dans la phase de conception du bâtiment afin d'optimiser ses performances. Nous présentons une méthodologie pour transformer le modèle architectural du BIM en modèle énergétique ainsi que des modèles optique et thermique du CFS compatibles avec le BIM. Ces modèles sont validés par une comparaison avec des données expérimentales et les normes actuelles. / The energy efficiency of the building occupies an important place in construction projects. The facade plays a key role in determining the performance of the building. Complex fenestration systems (CFS) are therefore generally used to improve its efficiency. The facade's performance evaluation usually includes energy consumption, natural lighting, visual and thermal comfort aspects in order to choose the optimal CFS. Recent efforts have focused on using rich models such as Building Information Modeling (BIM). These models provide an opportunity for automation and cost savings. Several CFS models could easily be compared to optimize the building's performance. In this thesis, we present a methodology to transform the architectural model of the BIM into a Building Energy Model compatible with several simulation software. We also present optical and thermal models compatible with BIM. These models are validated by comparison with experimental data and current standards.

Page generated in 0.1037 seconds