Spelling suggestions: "subject:"complex manifolds"" "subject:"complex mainifolds""
11 |
ADE and affine ADE bundles over complex surfaces with pg = 0. / CUHK electronic theses & dissertations collectionJanuary 2013 (has links)
我们研究了P[subscript g]=0 的复曲面x 上的ADE 向量丛和仿射ADE 向量丛。 / 首先,我们假设x 上有一个ADE 奇异点。这个奇异点在极小分解Y 中的例外轨迹是一条相应形式的ADE 曲线。利用这条ADE 曲线和向量丛的扩张,我们构造了Y 上的一个ADE 向量丛,而且这个向量丛可以下降到x上。此外,我们利用Y 上( -1)- 曲线的组合,描述了他们的极小表示向量丛。 / 其次,我们假设x 是一个椭圆曲面,而且x 上有一个仿射ADE 形式的奇异纤维。类似于以前,我们构造了X 上的一个仿射ADE 向量丛,而且这个向量丛在这条仿射ADE 曲线上的每一个不可约成分上都是平凡的。 / 然后,当X 是P²上突起n ≤9 个点时, x 上有一个典型的En 向量丛。我们详细的研究了x 的几何和这个E[subscript n] 向量丛的可变形性之间的关系。 / We study ADE and affine ADE bundles over complex surfaces X with P[subscript g] = 0. / First, we suppose X admits an ADE singularity. The exceptional locus of this singularity in the minimal resolution Y is an ADE curve of corresponding type. Using this ADE curve and bundle extensions, we construct an ADE bundle over Y which can descend to X. Furthermore, we describe their minuscule representation bundles in terms of configuration of (reducible) (-1)-curves. / Second, we assume X is an elliptic surface with a singular fiber of affine ADE type. Similar to above studies, we construct the affine ADE bundle over X which is trivial on each irreducible component of the affine ADE curve. / Third, when X is the blowup of P² at n ≤9 points, there is a canonical E[subscript n] bundle over it. We give a detailed study of the relationship between the geometry of X and the deformability of this bundle. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Chen, Yunxia. / On t.p. "g" is subscript. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 84-87). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese. / Chapter I --- ADE bundles --- p.9 / Chapter 1 --- ADE Lie algebra bundles --- p.10 / Chapter 1.1 --- ADE singularities --- p.10 / Chapter 1.2 --- ADE bundles --- p.12 / Chapter 2 --- Minuscule representations and ( -1)-curves --- p.16 / Chapter 2.1 --- Standard representations --- p.16 / Chapter 2.2 --- Minuscule representations --- p.17 / Chapter 2.3 --- Configurations of ( -1)-curves --- p.17 / Chapter 2.4 --- Minuscule representations from ( -1)-curves --- p.19 / Chapter 2.5 --- Bundles from ( -1)-curves --- p.21 / Chapter 2.6 --- Outline of Proofs for g ≠E₈ --- p.22 / Chapter 3 --- A[subscript n] case --- p.24 / Chapter 3.1 --- A[subscript n] standard representation bundle Lη^(An,Cn+1) --- p.24 / Chapter 3.2 --- An Lie algebra bundle Sη^(An) --- p.28 / Chapter 3.3 --- An minuscule representation bundle Lη^(An,^kCn+1) --- p.28 / Chapter 4 --- Dn case --- p.30 / Chapter 4.1 --- Dn standard representation bundle Lη^(Dn;C2n) --- p.30 / Chapter 4.2 --- Dn Lie algebra bundle Sη^(Dn) --- p.34 / Chapter 4.3 --- Dn spinor representation bundles Lη^(Dn;S±06) --- p.34 / Chapter 5 --- En case --- p.39 / Chapter 5.1 --- E₆ case --- p.39 / Chapter 5.2 --- E₇ case --- p.42 / Chapter 5.3 --- E₈ case --- p.44 / Chapter 6 --- Proof of Theorem 1.2.1 --- p.45 / Chapter II --- Affine ADE bundles --- p.50 / Chapter 7 --- Affine ADE Lie algebra bundles --- p.51 / Chapter 7.1 --- Affine ADE curves --- p.51 / Chapter 7.2 --- Affine ADE bundles --- p.53 / Chapter 8 --- Trivialization of E₀ gover Ci's after deformations --- p.57 / Chapter 8.1 --- Trivializations in loop ADE cases --- p.58 / Chapter 8.2 --- Trivializations in affine ADE cases --- p.60 / Chapter 8.3 --- Proof (except the loop E₈ case) --- p.60 / Chapter 8.4 --- Proof for the loop E₈ case --- p.62 / Chapter III --- Deformability --- p.65 / Chapter 9 --- En-bundle over Xn with n≤9 --- p.66 / Chapter 9.1 --- En-bundle over Xn with n ≤ 9 --- p.66 / Chapter 9.2 --- Deformability of such E₀E₈ --- p.68 / Chapter 9.3 --- Negative curves in X9 --- p.70 / Chapter 9.4 --- Proof of Theorems 9.2.1 and 9.2.2 --- p.75 / Chapter A --- Minuscule configurations --- p.78 / Chapter B --- A ffine Lie algebras --- p.80
|
12 |
Rigidity theorems on Hermitian locally symmetric spaces.January 2012 (has links)
透過使用調和映射的Bochner技巧, Siu[15, 16]證明了對於複維數≥2 時不可約對稱域緊致商空間的複結構的強剛定理. 其後在[9]中, Mok 證明了在任何秩≥2 的不可約對稱域緊致商空間上, 所有具備非正全純雙截曲率的Hermitian 度量必然和典範度量相差一個常數因子. 由這個定理和Siu 的定理可以得出Mostow 剛性定理[14]在特殊情形下的推廣.本論文會對Mok的結果作出研究. / By using Bochner technique of harmonic maps, Siu[15, 16] proved a strong rigidity theorem concerning the complex structure of compact quotients of irreducible bounded symmetric domain of complex dimension≥ 2. Later in [9], Mok proved a metric rigidity theorem which asserts that any Hermitian metric of seminegative holomorphic bisectional curvature on a compact quotient of an irreducible bounded symmetric domain of rank≥ 2 is necessarily a constant multiple of the canonical metric. This theorem together with the theorem of Siu yields a generalization of a special case of Mostow's rigidity theorem[14]. This thesis is an exposition of Mok's results. / Detailed summary in vernacular field only. / Li, Ka Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 102-104). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Symmetric Space --- p.5 / Chapter 2.1 --- Riemannian Symmetric Spaces --- p.5 / Chapter 2.2 --- Lie Groups and Lie Algebras --- p.10 / Chapter 2.3 --- Riemannian Symmetric Spaces of Compact and Non-compact type --- p.11 / Chapter 2.4 --- Hermitian Symmetric Spaces --- p.16 / Chapter 2.5 --- Duality --- p.19 / Chapter 3 --- Some Embedding Theorems --- p.22 / Chapter 3.1 --- The Borel Embedding Theorem --- p.22 / Chapter 3.2 --- Root Space Decomposition and Root System --- p.24 / Chapter 3.3 --- The Polydisc Theorem --- p.28 / Chapter 3.4 --- The Harish-Chandra Embedding Theorem --- p.36 / Chapter 4 --- Bounded Symmetric Domains --- p.42 / Chapter 4.1 --- Classical Bounded Symmetric Domains --- p.42 / Chapter 4.2 --- The Bergman metric --- p.57 / Chapter 5 --- Projective and Characteristic Bundle --- p.65 / Chapter 5.1 --- Projectivization of Hermitian Vector Bundle --- p.65 / Chapter 5.2 --- Characteristic bundle --- p.69 / Chapter 6 --- The Hermitian Metric Rigidity Theorem --- p.83 / Chapter 7 --- Appendix --- p.100 / Bibliography --- p.102
|
13 |
Complex manifolds and deformation theory.January 1997 (has links)
by Yeung Chung Kuen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 104-105). / Chapter 1 --- Infinitesimal Deformation of Compact Complex Manifolds --- p.3 / Chapter 1.1 --- Differentiable Family --- p.3 / Chapter 1.2 --- Infinitesimal Deformation in Differentiable Family --- p.6 / Chapter 1.3 --- Trivial Differentiable Family --- p.8 / Chapter 1.4 --- Complex Analytic Family --- p.13 / Chapter 1.5 --- Induced Family --- p.19 / Chapter 2 --- Theorem of Existence --- p.22 / Chapter 2.1 --- Introduction --- p.22 / Chapter 2.2 --- "Some Facts on the qth Cohomology Group Hq(M,´ة)" --- p.23 / Chapter 2.3 --- Obstructions to Deformation --- p.24 / Chapter 2.4 --- An Elementary Method for Theorem of Existence --- p.26 / Chapter 2.5 --- Proof of Theorem of Existence --- p.35 / Chapter 3 --- "Comparison between the Number of Moduli m(M) and dim H1 (M,´ة)" --- p.64 / Chapter 3.1 --- Number of Moduli of Compact Complex Manifold --- p.64 / Chapter 3.2 --- Examples --- p.68 / Chapter 4 --- Theorem of Completeness --- p.84 / Chapter 4.1 --- Theorem of Completeness --- p.84 / Chapter 4.2 --- Construction of Formal Power Series of h and g --- p.86 / Chapter 4.3 --- Proof of Convergence --- p.93
|
14 |
Variations and uniform compactificatfons of fibers on Stein spacesChan, Shu-fai. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
|
15 |
Classification of almost homogeneous complex surfacesPotter, Joseph Antonius Maria, January 1969 (has links)
Proefschrift-Leyden. / Summary in Dutch. Vita. Bibliography: p. 70-72.
|
16 |
Zur regularität der Cauchy-Riemannschen Differentialgleichungen auf komplexen RäumenRuppenthal, Jean. January 2006 (has links)
Thesis (doctoral)--Rheinische Friedrich-Wilhelms-Universität Bonn, 2006 / Includes bibliographical references (p. 214-215).
|
17 |
Higher asymptotics of the complex Monge-Ampère equation and geometry of CR-manifoldsLee, John Marshall. January 1982 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 1982 / Bibliography: leaves 78-79. / by John Marshall Lee. / Ph. D. / Ph. D. Massachusetts Institute of Technology, Department of Mathematics
|
18 |
Residual Julia sets of Newton's maps and Smale's problems on the efficiency of Newton's methodChoi, Yan-yu., 蔡欣榆. January 2006 (has links)
published_or_final_version / abstract / Mathematics / Master / Master of Philosophy
|
19 |
Residual Julia sets of Newton's maps and Smale's problems on the efficiency of Newton's methodChoi, Yan-yu. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2006. / Title proper from title frame. Also available in printed format.
|
20 |
Complex and almost-complex structures on six dimensional manifoldsBrown, James Ryan, January 2006 (has links)
Thesis (Ph.D.)--University of Missouri-Columbia, 2006. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 26, 2007) Vita. Includes bibliographical references.
|
Page generated in 0.0358 seconds