Spelling suggestions: "subject:"complexité."" "subject:"complexités.""
91 |
Tâches de raisonnement en logiques hybrides / Reasoning Tasks for Hybrid LogicsHoffmann, Guillaume 13 December 2010 (has links)
Les logiques modales sont des logiques permettant la représentation et l'inférence de connaissances. La logique hybride est une extension de la logique modale de base contenant des nominaux, permettant de faire référence à un unique individu ou monde du modèle. Dans cette thèse nous présentons plusieurs algorithmes de tableaux pour logiques hybrides expressives. Nous présentons aussi une implémentation de ces calculs, et nous décrivons les tests de correction et de performance que nous avons effectués, ainsi que les outils les permettant. De plus, nous étudions en détail une famille particulière de logiques liée aux logiques hybrides : les logiques avec opérateurs de comptage. Nous étudions la complexité et la décidabilité de certains de ces langages / Modal logics are logics enabling representing and inferring knowledge. Hybrid logic is an extension of the basic modal logic that contains nominals which enable to refer to a single individual or world of the model. In this thesis, we present several tableaux-based algorithms for expressive hybrid logics. We also present an implementation of these calculi and we describe correctness and performance tests we carried out, and the tools that enable these. Moreover, we study a particular family of logics related to hybrid logics: logics with counting operators.We investigate previous results, and study the complexity and decidability of certain of these languages
|
92 |
Complexité d'ordre supérieur et analyse récursive / Higher order complexity and computable analysisFérée, Hugo 10 December 2014 (has links)
Alors que la complexité des fonctions d'ordre 1 est bien définie et étudiée, il n'existe pas de notion satisfaisante à tout ordre. Une telle théorie existe déjà à l'ordre 2 et permet de définir une classe analogue aux fonctions calculables en temps polynomial usuelles. Cela est tout particulièrement intéressant dans le domaine de l'analyse récursive où l'on peut représenter, entre autres, les nombres et les fonctions réelles par des fonctions d'ordre 1. On peut alors remarquer un lien fort entre calculabilité et continuité, et aussi rapprocher la complexité avec certaines propriétés analytiques, ce que nous illustrons dans le cas des opérateurs réels. Nous prouvons cependant que, du point de vue de la complexité, les fonctions d'ordre 1 ne permettent pas de représenter fidèlement certains espaces mathématiques. Ce résultat appuie tout particulièrement la nécessité d'une théorie de la complexité d'ordre supérieur. Nous développons alors un modèle de calcul basé sur la sémantique des jeux, où l'application de deux fonctions est représentée par la confrontation de deux stratégies dans un jeu. En définissant la taille de telles stratégies, nous pouvons déduire une notion robuste et pertinente de complexité pour ces stratégies et donc pour les fonctions d'ordre supérieur. Nous définissons aussi une classe de fonctions calculables en temps polynomial qui paraît être un bon candidat pour définir une classe de complexité raisonnable à tout ordre / While first order complexity is well defined and studied, higher order lacks a satisfactory notion of complexity. Such a theory already exists at order 2 and provides a complexity class analogue to usual polynomial time computable functions. This is already especially interesting in the domain of computable analysis, where real numbers or real functions for example can be represented by first order functions. In particular, there is a clear link between computability and continuity, and we also illustrate in the case of real operators that complexity can be related to some analytical properties. However, we prove that, from a complexity point of view, some mathematical spaces can not be faithfully represented by order 1 functions and require higher order ones. This result underlines that there is a need to develop a notion of complexity at higher types which will be, in particular but not only, useful to computable analysis. We have developed a computational model for higher type sequential computations based on a game semantics approach, where the application of two functions is represented by the game opposing two strategies. By defining the size of such strategies, we are able to define a robust and meaningful notion of complexity at all types, together with a class of polynomial time computable higher order functionals which seems to be a good candidate for a class of feasible functionals at higher types
|
93 |
Partage de secret et théorie algorithmique de l'information / Secret Sharing and Algorithmic Information TheoryKaced, Tarik 04 December 2012 (has links)
Notre travail sur le partage de secret se base sur les points de vue théoriques de la Théorie de l'Information de Shannon et de la Complexité de Kolmogorov. Nous allons expliquer comment ces trois sujets intimement liés.Les inégalité d'information jouent un rôle centrale dans ce manuscrit. Ce sont les inégalités pour l'entropie de Shannon, mais correspondent aussi aux inégalités pour la complexité de Kolmogorov.La complexité de Kolmogorov formalise l'idée d'aléatoire pour les chaînes de caractère. Ce sont là deux raisons qui justifient à elles seules la notion de partage de secret algorithmique dans le cadre de la Théorie Algorithmique de l'information (si l'on sait partager un secret aléatoire, on peut partager n'importe quel secret).Originalement étudié par sa définition combinatoire, le partage de secret a été plus tard généralisé par sa formulation par les quantités définies dans la théorie de l'information. Cette étape a permis l'utilisation des inégalités d'information et s'est révélée très importante dans la caractérisation desschémas de partage de secret efficaces.L'étude des inégalités d'information n'en est qu'à ses débuts. Nous y contribuons en introduisant la notion d'inégalité essentiellement conditionnelles, qui montre une fois de plus que ces inégalités ne sont pas encore complètement comprises. / Our work deals with secret sharing in the theoretical point of views of Shannon's Information Theory and Kolmogorov's Algorithmic Information Theory. We are going to explain how these three subjects are naturally deeply intertwined.Information inequalities play a central role in this text. They are the inequalities for Shannon entropy, but also they are in exact correspondence with the inequalities for Kolmogorov complexity. Kolmogorov complexity formalizes the idea of randomness for strings.These two reasons alone justify to consider the notion of secret sharing in the Algorithmic framework (if one can share a random secret one can share anything).Originally, secret sharing was first studied under the combinatorial lens, only later was it more generally formalized using information-theoretic measures. This step allowed the use of information inequalities which revealed to bevery important to understand the existence of secret-sharing schemes with respect to efficiency.The investigation of information inequalities is at its debut. We contribute to the subject by introducing the notion of essentially conditional inequalities, which shows once again that information inequalities are yet not fully understood.
|
94 |
Approximation et complexité paramétrée de problèmes d’optimisation dans les graphes : partitions et sous-graphes / Approximation and parameterized complexity of graph optimisation problems : partitions and subgraphsWatrigant, Rémi 02 October 2014 (has links)
La théorie de la NP-complétude nous apprend que pour un certain nombre de problèmes d'optimisation, il est vain d'espérer un algorithme efficace calculant une solution optimale. Partant de ce constat, un moyen pour contourner cet obstacle est de réaliser un compromis sur chacun de ces critères, engendrant deux approches devenues classiques. La première, appelée approximation polynomiale, consiste à développer des algorithmes efficaces et retournant une solution proche d'une solution optimale. La seconde, appelée complexité paramétrée, consiste à développer des algorithmes retournant une solution optimale mais dont l'explosion combinatoire est capturée par un paramètre de l'entrée bien choisi. Cette thèse comporte deux objectifs. Dans un premier temps, nous proposons d'étudier et d'appliquer les méthodes classiques de ces deux domaines afin d'obtenir des résultats positifs et négatifs pour deux problèmes d'optimisation dans les graphes : un problème de partition appelé Sparsest k-Compaction, et un problème de recherche d'un sous-graphe avec une cardinalité fixée appelé Sparsest k-Subgraph. Dans un second temps, nous présentons comment les méthodes de ces deux domaines ont pu se combiner ces dernières années pour donner naissance au principe d'approximation paramétrée. En particulier, nous étudierons les liens entre approximation et algorithmes de noyaux. / The theory of NP-completeness tells us that for many optimization problems, there is no hope for finding an efficient algorithm computing an optimal solution. Based on this, two classical approaches have been developped to deal with these problems. The first one, called polynomial- time approximation, consists in designing efficient algorithms computing a solution that is close to an optimal one. The second one, called param- eterized complexity, consists in designing exact algorithms which com- binatorial explosion is captured by a carefully chosen parameter of the instance. The goal of this thesis is twofold. First, we study and apply classical methods from these two domains in order to obtain positive and negative results for two optimization problems in graphs: a partitioning problem called Sparsest k-Compaction, and a cardinality constraint subgraph problem called Sparsest k-Subgraph. Then, we present how the different methods from these two domains have been combined in recent years in a concept called parameterized approximation. In particular, we study the links between approximation and kernelization algorithms.
|
95 |
Approximation, complexité paramétrée et stratégies de résolution de problèmes d'affectation multidimensionnelle / Approximability, parameterized complexity and solving strategies of some multidimensional assignment problemsDuvillié, Guillerme 07 October 2016 (has links)
Au cours de la thèse, nous nous sommes intéressés aux problèmes d'empilement de wafers. Ces problèmes apparaissent lors de la fabrication de processeurs en 3 dimensions. Au cours du processus de fabrication, les puces électroniques doivent être empilées les unes sur les autres. Jusqu'à peu, ces dernières, une fois gravées sur des plaques de silicium appelées wafers, étaient découpées, puis triées afin d'écarter les puces défectueuses et enfin assemblées les unes entre elles.Cependant empiler les wafers plutôt que les puces présente de nombreux avantages techniques et financiers. Naturellement, étant impossible d'écarter les puces défectueuses sans découper la plaque de silice, le problème de la superposition d'une puce viable avec une puce défectueuse se pose. Une pile de puces, étant considérées comme défectueuse si elle contient ne serait-ce qu'une puce défectueuse, la superposition non réfléchie des wafers entre eux mènerait à un rendement désastreux.Afin de générer un nombre minimum de piles défectueuses, une "cartographie" de chaque wafer candidat à la superposition est réalisée lors d'une phase de test, permettant de situer les puces défectueuses sur le wafer. Une fois cette cartographie réalisée, l'objectif est de sélectionner les wafers qui seront assemblés ensembles de manière à faire correspondre les défauts de chacun des wafers.Ce problème peut être modélisé à l'aide d'un problème d'affectation multidimensionnelle. Chaque wafer est représenté par un vecteur comportant autant de composantes que de puces sur le wafer qu'il représente. Une composante égale à zéro matérialise une puce défectueuse tandis qu'un un matérialise une puce viable. Chaque lot de wafers est représenté par un lot de vecteurs. Formellement, une instance d'empilement de wafers est représenté par m ensembles de n vecteurs binaires p-dimensionnels. L'objectif est alors de réaliser n m-uplets disjoints contenant exactement un vecteur par ensemble. Ces m-uplets représenteront les piles. Chaque m-uplet peut être représenté par un vecteur binaire p-dimensionnels, chaque composante étant calculée en réalisant le ET binaire des composantes correspondantes des vecteurs qui composent le m-uplet. Autrement dit, une composante du vecteur représentant le m-uplet est égale à un si et seulement si tous les vecteurs ont cette composante égale à un. Et donc une pile de puces est viables si toutes les puces qui la composent sont viables. L'objectif est alors de minimiser le nombre de zéros ou de maximiser le nombre de un.La thèse comporte deux grandes parties. Une partie théorique abordant la complexité des différentes versions du problèmes en fonction de certains paramètres tels que m, n, p ou encore le nombre maximum de zéros par vecteurs. Nous montrons entre autre que ces problèmes peuvent être utilisés pour modéliser des problèmes plus classiques tels que Maximum Clique, Minimum Vertex Cover ou encore k-Dimensional Matching, permettant de prouver un certain nombre de résultats négatifs que ce soit d'un point de vue de la complexité classique, l'approximabilité ou la complexité paramétrée. Nous fournissons également des résultats positifs pour des cas particuliers du problème.Dans un second temps, nous nous intéressons à la résolution pratique du problème en fournissant et comparant un certain nombre de formulations en Programmation Linéaire en Nombres Entiers. Mais nous nous intéressons également aux performances en pratique de certaines heuristiques à garantie de performances détaillées dans la partie théorique. / In this thesis, we focused in the Wafer-to-Wafer integration problems. These problems come from IC manufacturing. During the production of three-dimensional processors, dies have to be superimposed. Until recent, the dies were engraved on a silicon disk called wafer, then were cut, tested and sorted to suppress faulty dies and lastly superimposed one to each other.However superimposing wafers instead of dies presents several technical and financial advantages. Since faulty dies can only be dismissed when cutting the wafer, superimpose two wafers can lead to superimpose a faulty die with a viable one. In this case, the resulting stack of dies is considered as faulty. It follows that a bad assignment between the wafers can lead to a disastrous yield.In order to minimize the number of faulty dies stacks, a "failure map" of each wafer is generated during a test phase. This map gives location of the faulty dies on the wafers. The objective is then to take advantage of this map to define an assignment of the wafers to each other in order to match as many failures as possible.This problem can be modelized with Multidimensional Assignment problems. Each wafer can be seen as a vector with as many dimensions as the number of dies engraved on it. A coordinate set to zero marks a faulty die while a coordinate set to one indicates a viable one. Each seat of wafers is represented by a set of vector. Formally, an instance of a Wafer-to-Wafer integration problem is represented by m sets of n p-dimensional vectors. The objective is then to partition the vectors into n disjoint m-tuples, each tuple containing exactly one vector per set. An m-tuple represents a stack of wafers. Every m-tuple can be represented by a p-dimensional vector. Each coordinate is computed by performing the bitwise AND between the corresponding coordinates of the vectors that compose the m-tuple. In other words, a coordinate of the representative vector is equal to one if and only if this coordinate is equal to one in every vector composing the tuple. It follows that a dies stack is viable if and only if all the dies composing the stack are viable. The objective is then to maximize the overall number of ones of to minimize the overall number of zeros.The first part of the thesis is a theoretical one. We study the complexity of the considered versions of the problem with regards to natural parameters such as m, n, p or the number of zeros per vector. We show that these problems can encode more classical problems such as Maximum Clique, Minimum Vertex Cover or k-Dimensional Matching. This leads to several negative results from computational complexity, approximability or even parameterized complexity point of view. We also provide several positive results for some specific cases of the problem.In a second part, we focus on the practical solving of the problem. We provide and compare several Integer Linear Programming formulations. We also focus on performances of some approximation algorithms that we detailed in the theoretical part.
|
96 |
(Méta)-noyaux constructifs et linéaires dans les graphes peu denses / Constructive and Linear (Meta)-Kernelisations on Sparse GraphsGarnero, Valentin 04 July 2016 (has links)
En algorithmique et en complexité, la plus grande part de la recherche se base sur l’hypothèse que P ≠ NP (Polynomial time et Non deterministic Polynomial time), c'est-à-dire qu'il existe des problèmes dont la solution peut être vérifiée mais non construite en temps polynomial. Si cette hypothèse est admise, de nombreux problèmes naturels ne sont pas dans P (c'est-à-dire, n'admettent pas d'algorithme efficace), ce qui a conduit au développement de nombreuses branches de l'algorithmique. L'une d'elles est la complexité paramétrée. Elle propose des algorithmes exacts, dont l'analyse est faite en fonction de la taille de l'instance et d'un paramètre. Ce paramètre permet une granularité plus fine dans l'analyse de la complexité.Un algorithme sera alors considéré comme efficace s'il est à paramètre fixé, c'est-à-dire, lorsque sa complexité est exponentielle en fonction du paramètre et polynomiale en fonction de la taille de l'instance. Ces algorithmes résolvent les problèmes de la classe FPT (Fixed Parameter Tractable).L'extraction de noyaux est une technique qui permet, entre autre, d’élaborer des algorithmes à paramètre fixé. Elle peut être vue comme un pré-calcul de l'instance, avec une garantie sur la compression des données. Plus formellement, une extraction de noyau est une réduction polynomiale depuis un problème vers lui même, avec la contrainte supplémentaire que la taille du noyau (l'instance réduite) est bornée en fonction du paramètre. Pour obtenir l’algorithme à paramètre fixé, il suffit de résoudre le problème dans le noyau, par exemple par une recherche exhaustive (de complexité exponentielle, en fonction du paramètre). L’existence d'un noyau implique donc l'existence d'un algorithme à paramètre fixé, la réciproque est également vraie. Cependant, l’existence d'un algorithme à paramètre fixé efficace ne garantit pas un petit noyau, c'est a dire un noyau dont la taille est linéaire ou polynomiale. Sous certaines hypothèses, il existe des problèmes n’admettant pas de noyau (c'est-à-dire hors de FPT) et il existe des problèmes de FPT n’admettant pas de noyaux polynomiaux.Un résultat majeur dans le domaine des noyaux est la construction d'un noyau linéaire pour le problème Domination dans les graphes planaires, par Alber, Fellows et Niedermeier.Tout d'abord, la méthode de décomposition en régions proposée par Alber, Fellows et Niedermeier, a permis de construire de nombreux noyaux pour des variantes de Domination dans les graphes planaires. Cependant cette méthode comportait un certain nombre d’imprécisions, ce qui rendait les preuves invalides. Dans la première partie de notre thèse, nous présentons cette méthode sous une forme plus rigoureuse et nous l’illustrons par deux problèmes : Domination Rouge Bleue et Domination Totale.Ensuite, la méthode a été généralisée, d'une part, sur des classes de graphes plus larges (de genre borné, sans-mineur, sans-mineur-topologique), d'autre part, pour une plus grande variété de problèmes. Ces méta-résultats prouvent l’existence de noyaux linéaires ou polynomiaux pour tout problème vérifiant certaines conditions génériques, sur une classe de graphes peu denses. Cependant, pour atteindre une telle généralité, il a fallu sacrifier la constructivité des preuves : les preuves ne fournissent pas d'algorithme d'extraction constructif et la borne sur le noyau n'est pas explicite. Dans la seconde partie de notre thèse nous effectuons un premier pas vers des méta-résultats constructifs ; nous proposons un cadre général pour construire des noyaux linéaires en nous inspirant des principes de la programmation dynamique et d'un méta-résultat de Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh et Thilikos. / In the fields of Algorithmic and Complexity, a large area of research is based on the assumption that P ≠ NP(Polynomial time and Non deterministic Polynomial time), which means that there are problems for which a solution can be verified but not constructed in polynomial time. Many natural problems are not in P, which means, that they have no efficient algorithm. In order to tackle such problems, many different branches of Algorithmic have been developed. One of them is called Parametric Complexity. It consists in developing exact algorithms whose complexity is measured as a function of the size of the instance and of a parameter. Such a parameter allows a more precise analysis of the complexity. In this context, an algorithm will be considered to be efficient if it is fixed parameter tractable (fpt), that is, if it has a complexity which is exponential in the parameter and polynomial in the size of the instance. Problems that can be solved by such an algorithm form the FPT class.Kernelisation is a technical that produces fpt algorithms, among others. It can be viewed as a preprocessing of the instance, with a guarantee on the compression of the data. More formally, a kernelisation is a polynomial reduction from a problem to itself, with the additional constraint that the size of the kernel, the reduced instance, is bounded by a function of the parameter. In order to obtain an fpt algorithm, it is sufficient to solve the problem in the reduced instance, by brute-force for example (which has exponential complexity, in the parameter). Hence, the existence of a kernelisiation implies the existence of an fpt algorithm. It holds that the converse is true also. Nevertheless, the existence of an efficient fpt algorithm does not imply a small kernel, meaning a kernel with a linear or polynomial size. Under certain hypotheses, it can be proved that some problems can not have a kernel (that is, are not in FPT) and that some problems in FPT do not have a polynomial kernel.One of the main results in the field of Kernelisation is the construction of a linear kernel for the Dominating Set problem on planar graphs, by Alber, Fellows and Niedermeier.To begin with, the region decomposition method proposed by Alber, Fellows and Niedermeier has been reused many times to develop kernels for variants of Dominating Set on planar graphs. Nevertheless, this method had quite a few inaccuracies, which has invalidated the proofs. In the first part of our thesis, we present a more thorough version of this method and we illustrate it with two examples: Red Blue Dominating Set and Total Dominating Set.Next, the method has been generalised to larger classes of graphs (bounded genus, minor-free, topological-minor-free), and to larger families of problems. These meta-results prove the existence of a linear or polynomial kernel for all problems verifying some generic conditions, on a class of sparse graphs. As a price of generality, the proofs do not provide constructive algorithms and the bound on the size of the kernel is not explicit. In the second part of our thesis, we make a first step to constructive meta-results. We propose a framework to build linear kernels based on principles of dynamic programming and a meta-result of Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh and Thilikos.
|
97 |
La modalité et ses réalisations en français / Modality and its manifestations in frenchMai, Udo 29 October 2018 (has links)
La modalité est un phénomène linguistique qui ne peut pas être défini à partir de critères uniquement sémantiques. Une définition complète de la modalité doit prendre en compte ses propriétés sémantiques, fonctionnelles et structurelles. Dans la présente étude, nous bâtissons d’abord un cadre théorique en nous servant d’une approche onomasiologique, pour ensuite analyser les différentes manières dont les sens modaux peuvent être exprimés en français de façon sémasiologique. Cette analyse s’attarde aussi sur des porteurs de modalité moins étudiés comme les particules modales, les verbes et les connecteurs impliquant le statut factuel ou assertif de la proposition qu’ils introduisent et le rapport entre la structure informationnelle et la modalité. Notre analyse s’appuie sur les corpus Frantext, WebCorp, Wortschatz Leipzig et la collection French Web 2012 de Sketch Engine et comprend plus de douze milliards de mots. Certaines caractéristiques des éléments modaux du français ne peuvent être relevées que lorsqu’ils interagissent avec d’autres éléments modalisant la même proposition. L’étude de ces manifestations complexes de la modalité complète ce portrait de la catégorie sémantico-fonctionnelle de la modalité en français. / Modality is a linguistic phenomenon that cannot be defined in purely semantic terms. A complete definition of modality has to take into account all of its semantic, functional, and structural properties. In the present work, we first build up a theoretic framework based on an onomasiological approach, and then analyze the different ways modal meanings can be expressed in French from a semasiological point of view. This analysis includes the elements most prototypical for the category of modality, such as modal verbs, modal adverbs and mood. Furthermore, it also takes into account less prototypical modal elements, such as modal particles, verbs and connectors implying the factual or assertive status of the proposition they introduce, as well as the relation between information structure and modality. The analysis is based upon the corpora Frantext, WebCorp, Wortschatz Leipzig and the text collection French Web 2012 in Sketch Engine. Certain properties of modal elements in French can only be detected when they interact with other elements modalizing the same proposition. The study of these complex manifestations of modality completes this portrait of the functional-semantic category of modality in contemporary French.
|
98 |
Complexité des pavages apériodiques : calculs et interprétations / Complexity of aperiodic tilings : computations and interpretationsJulien, Antoine 10 December 2009 (has links)
La théorie des pavages apériodiques a connu des développements rapides depuis les années 1980, avec la découvertes d'alliages métalliques cristallisant dans une structure quasi-périodique.Dans cette thèse, on étudie particulièrement deux méthodes de construction de pavages : par coupe et projection, et par substitution. Deux angles d'approche sont développés : l'étude de la fonction de complexité, et l'étude métrique de l'espace de pavages.Dans une première partie, on calcule l'asymptotique de la fonction de complexité pour des pavages coupe et projection, généralisant ainsi des résultats connus en dynamiques symbolique pour la dimension 1. On montre que pour un pavage coupe et projection canonique N sur d sans période, la complexité croît (à des constantes près) comme n à la puissance a, où a est un entier compris entre d et N-d.Ensuite, on se base sur une construction de Pearson et Bellissard qui construisent un triplet spectral sur les ensembles de Cantor ultramétriques. On suit leur construction dans le cas d'ensembles de Cantor auto-similaires. Elle s'applique en particulier aux transversales d'espaces de pavages de substitution.Enfin, on fait le lien entre la distance usuelle sur l'enveloppe d'un pavage et la complexité de ce pavage. Les liens entre complexité et métrique permettent de donner une preuve directe du fait suivant : la complexité des pavages de substitution apériodiques de dimension d croît comme n à la puissance d.La question de liens entre la complexité et la topologie (et pas seulement avec la distance) reste ouverte. Nous apportons cependant des réponses partielles dans cette direction. / Since the 1980s, the theory of aperiodic tilings developed quickly, motivated by the discovery of metallic alloys which crystallize in an aperiodic structure. This highlighted the need for new models of crystals.Two models of aperiodic tilings are specifically studied in this dissertation. First, the cut-and-project method, then the inflation and substitution method. Two point of view are developed for the study of these objects: the study of the complexity function associated to a tiling, and the metric study of the associated tiling space.In a first part, the asymptotic behaviour of the complexity function for cut-and-project tilings is studied. The results stated here generalize formerly known results in the specific case of dimension 1. It is proved that for an (N,d) canonical projection tiling without periods, the complexity grows like n to the a, with a an integer greater or equal to d but lesser or equal to N-d.A second part is based on a construction by Pearson and Bellissard of a spectral triple for ultrametric Cantor sets. Their construction is applied to self-similar Cantor sets. It applies in particular to the transversal of substitution tiling spaces.In a last part, the links between the complexity function of a tiling and the usual distance on its associated tiling space are made explicit. These links can provide a direct and complete proof of the following fact: the complexity of an aperiodic d-dimensional substitution tiling grows asymptotically as n to the d, up to constants. These links between complexity and distance raises the question of links between complexity and topology. Partial answers are given in this direction.
|
99 |
Standardisation des systèmes d’information : application dans les systèmes bancaires - Cas du Crédit Agricole / Standardization of information systems : application in banking systems - Case of Credit AgricoleGilles, Loïs 09 November 2018 (has links)
Ce travail doctoral propose une analyse de la standardisation des systèmes d’information (SI) au sein d’un groupe bancaire de dimension internationale. L’objectif est d’apporter des éléments de réponses à la problématique suivante : quels sont les principes de déploiement et les impacts d’une stratégie de standardisation des SI bancaires ? L’étude du cas du Crédit Agricole et dix-huit de ses filiales nous permet d’interpréter cette stratégie de standardisation des systèmes d’information comme un phénomène complexe et non linéaire. Les filiales étant autonomes juridiquement et opérationnellement, la démarche étudiée consiste à analyser le déploiement (gouvernance des SI, phénomènes d’isomorphisme), les conséquences organisationnelles entre la maison-mère et les filiales (apprentissage, routines organisationnelles) mais également les gains stratégiques attendus au niveau du groupe dans sa globalité (économies, interopérabilité, innovation). Au final, si cette stratégie se présente à première vue sous une forme d’impacts organisationnels simples, nous démontrons au travers de cette recherche que la standardisation des SI bancaires est une articulation bouclée complexe entre les niveaux de la stratégie, de la politique de standardisation et de l’organisation quotidienne. Nous montrons que cette complexité peut se gérer. / This doctoral work proposes an analysis of the standardization of information systems within an international banking group. The objective is to provide elements of answers to the following problematic: what are the principles of deployment and the impacts of a strategy of standardization of banking IS? The case study of Credit Agricole and eighteen of its subsidiaries allows us to interpret this strategy of information systems standardization as a complex and non-linear phenomenon. Since the subsidiaries are legally and operationally autonomous, the approach studied consists in analyzing the deployment (IS governance, isomorphism phenomenon), the organizational consequences between the parent company and the subsidiaries (learning, organizational routines) but also expected strategic gains at the the group as a whole (savings, interoperability, innovation). In the end, if this strategy appears at first glance in a form of simple organizational impacts, we demonstrate through this research that the standardization of banking IS is a complex looped articulation between the levels of the strategy, the standardization policy and the daily organization. We show that this complexity can be managed.
|
100 |
Le monde et Bataille. Études textuelles, contextuelles et prospectives / The world and Bataille. Textual studies, contextual and prospectiveMong-Hy, Cédric 06 March 2010 (has links)
Comme les Montaigne, les Pascal, les Nietzsche ou les Cioran, Bataille a écrit dans l'interstice qui lie et sépare l'écrivain, le savant et le philosophe. Comme eux, il a déployé une langue, parmi les plus belles qui soient, mais surtout, il a inquiété son époque, qui demeure en grande partie la nôtre, en maintenant au cœur de son écriture le supplice de la question. Question béante s'il en est, infiniment ouverte, mais pas forcément ni uniquement à la manière provocante d'une plaie ou d'une vulve. Question ouverte, cette fois-ci, non plus seulement sur la noire intériorité de cet étrange mystique « défroqué » qu'a été Bataille, mais aussi et principalement sur le monde immense et diversement coloré qui a fait de Bataille cet esprit si singulier. Car, Bataille était certes un comprachicos, mais les verrues qu'il cultivait sur son visage étaient avant tout celles de ses semblables, c'est-à-dire de l'humanité. Nous aurons donc l'occasion de voir quelle gaya scienza, quelle scienza nuova, quelle science vive Bataille a mise au point pour échapper à la disjonction et à l'isolement des idées éparpillées dans les différentes sciences, ainsi que pour redécouvrir la complexité de l'univers et sa complicité avec l'espèce humaine. En portant un regard qui se souhaite détaché de toute approche mimétique et/ou révérencieuse, nous avons voulu explorer trois grands discours, au sens de Michel Foucault, qui irriguent l'œuvre de Bataille, parfois de façon souterraine. Quels liens Bataille percevait-t-il entre la nature et la culture, et quelle est l'histoire de cette conception dans son œuvre ? Comment, à travers les généalogies du corps humain et du corps social, du paléolithique au vingtième siècle, Bataille a-t-il lu le rôle fondateur de l'art pour les sociétés humaines ? Et enfin, quelle épistémologie de la connaissance a permis à Bataille de progresser sans croître dans sa recherche inspirée, et d'y mêler savoir et « non-savoir », science et mystique ? / The abstract is available in French only
|
Page generated in 0.0715 seconds