• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electroplated Compliant High-Density Interconnects For Next-Generation Microelectronic Packaging

Lo, George Chih-Yu 20 August 2004 (has links)
Dramatic advances are taking place in the microelectronic industry. The feature size continues to scale down and it is expected that the minimum feature size on the integrated circuit is expected to reach 9 nm by 2016, and there will be more than 8 billion transistors on a 310 cm² chip, according to various available roadmaps. Subsequently, this reduction in feature size would require the first-level input-output interconnects to decrease in pitch size to meet the increased number of transistors on the chip. Also, to minimize the on-chip interconnect delay, development of low-K dielectric/copper will become increasingly common in future devices. However, due to the low fracture strength of low-K dielectric, it is essential that the first-level interconnects exert minimal force on the die pads and therefore, do not crack or delaminate the low-K dielectric material. It is also preferable to have a wafer-level packaging approach to facilitate test-and-burn in and to produce known-good dies. Based on these growing demands from the microelectronics industry, there is a compelling need to develop innovative interconnect technologies. This thesis aims to develop one such innovative interconnect — G-Helix interconnect. G-Helix is a scalable lithography-based wafer-level electroplated compliant interconnect that has the potential to meet the fine-pitch first-level chip-to-substrate interconnect requirements. The three-mask fabrication of G-Helix is based on lithography, electroplating and molding (LIGA-like) technologies, and this fabrication can be easily integrated into large-area wafer-level fine-pitch batch processing. In this work, the fabrication, assembly, experimental reliability testing, and numerical physics-based modeling of the G-Helix interconnects will be presented. The fabrication of the interconnects will be demonstrated at 100μm pitch on a 20 x 20 mm die in a class 10/1000 cleanroom facility. The wafers with compliant interconnects will be singulated into individual dies and assembled on substrates using Pb/Sn eutectic solder. The assembly will then be subjected to air-to-air thermal cycling between 0℃and 100℃ and the reliability of the compliant interconnect will be assessed. In addition to the thermo-mechanical reliability testing, some of the dies with free-standing interconnects will also be used for measuring the compliance of the interconnects by compressing with a nanoindenter. In parallel to the experimental research, a numerical analysis study will also be carried out. The numerical model will use direction-, temperature, time-dependent, and time independent material constitutive properties as appropriate. The thermo-mechanical fatigue life of the compliant interconnect assembly will be determined and compared with the experimental data. Recommendations will be developed for further enhancement of reliability and reduction in pitch size.
2

Response of multi-path compliant interconnects subjected to drop and impact loading

Bhat, Anirudh 27 August 2012 (has links)
Conventional solder balls used in microelectronic packaging suffer from thermo- mechanical damage due to difference in coefficient of thermal expansion between the die and the substrate or the substrate and the board. Compliant interconnects are replacements for solder balls which accommodate this differential displacement by mechanically decoupling the die from the substrate or the substrate from the board and aim to improve overall reliability and life of the microelectronic component. Research is being conducted to develop compliant interconnect structures which offer good mechanical compliance without adversely affecting electrical performance, thus obtaining good thermo-mechanical reliability. However, little information is available regarding the behavior of compliant interconnects under shock and impact loads. The objective of this thesis is to study the response of a proposed multi-path compliant interconnect structure when subjected to shock and impact loading. As part of this work, scaled-up substrate-compliant interconnect-die assemblies will be fabricated through stereolithography techniques. These scaled-up prototypes will be subjected to experimental drop testing. Accelerometers will be placed on the board, and strain gauges will be attached to the board and the die at various locations. The samples will be dropped from different heights to different shock levels in the components, according to Joint Electron Devices Engineering Council (JEDEC) standards. In parallel to such experiments with compliant interconnects, similar experiments with scaled-up solder bump interconnects will also be conducted. The strain and acceleration response of the compliant interconnect assemblies will be compared against the results from solder bump interconnects. Simulations will also be carried out to mimic the experimental conditions and to gain a better understanding of the overall response of the compliant interconnects under shock and impact loading. The findings from this study will be helpful for improving the reliability of compliant interconnects under dynamic mechanical loading.
3

Electroplated multi-path compliant copper interconnects for flip-chip packages

Okereke, Raphael Ifeanyi 22 May 2014 (has links)
The international technology roadmap for semiconductors (ITRS) 2012 report foresees the use of porous dielectric materials with a low dielectric constant in conjunction with copper interconnects as a way to reduce the resistive-capacitive (RC) delay in microelectronic applications. However, the introduction of pores in the dielectric not only serves as stress raisers but also diminishes the structural strength of the material. The challenge therefore with the implementation of low-k dielectrics for high-performance flip-chip packages is to create a reliable die to organic substrate interconnect solution which induces low stresses on the die to prevent the cohesive cracking and the interfacial delamination of the dielectric material. Potential interconnect solutions that meet this challenge are MEMS-like compliant freestanding micro-structures. These structures are designed to work as spring-like elements which allow the free lateral and out-of-plane motion between the silicon die and the organic substrate under assembly conditions as well as under thermal or power cycling. Thus, the focus of this research is to design, fabricate, and characterize electrically and mechanically an innovative compliant interconnect approach that addresses these challenges. The proposed interconnect is scalable in dimensions and pitch, and consists multiple electrical paths which will provide redundancy against interconnect failure. The multi-path design employs parallel electrical paths which effectively split a larger cross-sectional area into several smaller areas making the overall design more compliant than otherwise. This research proposes wafer-level, high-yield, CMOS-compatible fabrication procedure using sequential photolithography and copper electroplating. The proposed interconnects are symmetric and are amenable to easy reflow assembly to substrates. The mechanical compliance of the fabricated structures is studied through nano-indentation, while the electrical characteristics are assessed through fabricated prototypes. The xvi thermo-mechanical reliability of compliant interconnects is also demonstrated. Lastly, the dimensional scalability of the interconnects is also demonstrated.
4

Design and fabrication of free-standing structures as off-chip interconnects for microsystems packaging

Kacker, Karan 08 August 2008 (has links)
It is projected by the Semiconductor Industry Association in their International Technology Roadmap for Semiconductors (ITRS) that by the year 2019, with the IC feature size shrinking to about 10nm, off-chip interconnects in an area array format will require a pitch of 95 µm. Also, as the industry adopts porous low-K dielectric materials, it is important to ensure that the stresses induced by the off-chip interconnects and the package do not crack or delaminate the low-K material. Compliant free-standing structures used as off-chip interconnects are a potential solution. However, there are several design, fabrication, assembly and integration research challenges and gaps with the current suite of compliant interconnects. Accordingly, as part of this research a unique parallel-path approach has been developed which enhances the mechanical compliance of the compliant interconnect without compromising the electrical parasitics. It also provides for redundancy and thus results in more reliable interconnects. Also, to meet both electrical and mechanical performance needs, as part of this research a variable compliance approach has been developed so that interconnects near the center of the die have lower electrical parasitics while the interconnects near the corner of the die have higher mechanical compliance. Furthermore, this work has developed a fabrication process which will facilitate cost-effective fabrication of free-standing compliant interconnects and investigated key factors which impact assembly yield of free-standing compliant interconnects. Ultimately the proposed approaches are demonstrated by developing an innovative compliant interconnect called FlexConnects. Hence, through this research it is expected that the developed compliant interconnect would address the needs of first level interconnects over the next decade and eliminate a bottleneck that threatens to impede the exponential growth in microprocessor performance. Also, the concepts developed in this research are generic in nature and can be extended to other aspects of electronic packaging.

Page generated in 0.1115 seconds