• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 34
  • 12
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 142
  • 63
  • 53
  • 46
  • 42
  • 39
  • 34
  • 32
  • 28
  • 24
  • 24
  • 23
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise teórica e experimental de vigas mistas de aço e concreto e laje com vigotas pré-moldadas e lajotas cerâmicas em um pavimento tipo / Theorical and experimental analysis of composite steel and concrete beams and slabs made by precast elements with lattice and bricks on a frame

Bruno Eizo Higaki 11 December 2009 (has links)
As vigas mistas de aço e concreto são elementos estruturais que resultam da associação de um perfil de aço laminado, formado a frio ou soldado, e de uma laje de concreto podendo esta ser moldada in loco, pré-fabricada ou com forma de aço incorporada. A construção de vigas mistas com laje de vigotas pré-moldadas de concreto não é prevista pela norma brasileira de dimensionamento de elementos de aço NBR 8800:2008 e poucos estudos foram realizados até o momento. Geralmente, os estudos realizados sobre vigas mistas são feitos em modelos compostos por perfil de aço e uma faixa de laje denominada largura efetiva. Neste trabalho foi desenvolvido um estudo teórico e experimental de vigas mistas fazendo parte de um pavimento tipo. O objetivo principal foi o estudo do comportamento das vigas mistas pertencentes a um pavimento tipo quando submetidas a diferentes tipos de carregamentos, distribuídos e concentrados, verificação da formação de fissuras na laje e a importância de considerar uma faixa de laje maciça na região da largura efetiva sobre as vigas. A análise numérica foi realizada utilizando o pacote comercial ANSYS e por meio das expressões de cálculo fornecidas pela norma brasileira de aço e adaptações para consideração da pré-laje de concreto. Os resultados mostraram um bom desempenho das vigas mistas comparadas com a resistência de cálculo de acordo com as expressões fornecidas pela norma para vigas mistas com pré-laje de concreto e a importância da execução de uma faixa maciça na região da largura efetiva. / The composite steel and concrete beams are structural elements witch results of association by a hot rolled, cold formed or welded steel beam and concrete slab which can be made in site, precast or with steel deck. The design of composite beams made with slab made with precast type lattice joist isn\'t anticipated by the brazilian code and a few studies has been made up to now. Usually, the studies about composite beams are made with steel beam and a concrete\'s zone called a slab\'s effective width. In this work a teorical and experimetal studies were presented with a frame\'s composite beams. The aim of this work was investigate the behaviour when differents loads, distributed and concentrated, were apllied, find out if cracks appeared and the importance of design a solid slab on the effective width\'s regions. The theorical analysis made using the code ANSYS v.10.0 and with expressions of brazilian code for composite beams with precast slabs. The results have shown a good agreement with code\'s analitical models and teh importance of design a solid slab on the effective width\'s regions.
12

Hodnocení životnosti kompozitních konstrukcí / Fatigue Life Evaluation of Composites Structures

Mihalides, Dušan January 2010 (has links)
The doctoral thesis deals with fatigue life evaluation of composites structures. The thesis pro-vides complex review of problematic and it is based on recent situation assessment. The main ob-jective of the thesis is to design the methodology of fatigue life evaluation of composites struc-tures. The designed methodology is applied to fatigue life evaluation of sailplane wing and propel-ler blades. One part of the thesis deals with laboratory fatigue tests of composite specimens which are intended for comparison of the effect of manufacturing technology and environment condition.
13

An Improved Genetic Algorithm for the Optimization of Composite Structures

Gantovnik, Vladimir 04 November 2005 (has links)
There are many diverse applications that are mathematically modelled in terms of mixed discrete-continuous variables. The optimization of these models is typically difficult due to their combinatorial nature and potential existence of multiple local minima in the search space. Genetic algorithms (GAs) are powerful tools for solving such problems. GAs do not require gradient or Hessian information. However, to reach an optimal solution with a high degree of confidence, they typically require a large number of analyses during the optimization search. Performance of these methods is even more of an issue for problems that include continuous variables. The work here enhances the efficiency and accuracy of the GA with memory using multivariate approximations of the objective and constraint functions individually instead of direct approximations of the overall fitness function. The primary motivation for the proposed improvements is the nature of the fitness function in constrained engineering design optimization problems. Since GAs are algorithms for unconstrained optimization, constraints are typically incorporated into the problem formulation by augmenting the objective function of the original problem with penalty terms associated with individual constraint violations. The resulting fitness function is usually highly nonlinear and discontinuous, which makes the multivariate approximation highly inaccurate unless a large number of exact function evaluations are performed. Since the individual response functions in many engineering problems are mostly smooth functions of the continuous variables (although they can be highly nonlinear), high quality approximations to individual functions can be constructed without requiring a large number of function evaluations. The proposed modification improve the efficiency of the memory constructed in terms of the continuous variables. The dissertation presents the algorithmic implementation of the proposed memory scheme and demonstrates the efficiency of the proposed multivariate approximation procedure for the weight optimization of a segmented open cross section composite beam subjected to axial tension load. Results are generated to demonstrate the advantages of the proposed improvements to a standard genetic algorithm. / Ph. D.
14

Designing composite structures for reuse

Lam, Dennis, Yang, Jie, Dai, Xianghe, Sheehan, Therese, Zhou, Kan 30 November 2020 (has links)
Yes / Steel is a highly versatile and 100% recyclable material but is also carbon and energy intensive in production. Steel framed structures are inherently adaptable and potentially demountable. Reuse instead of the common practice of recycling steel by melting, makes good environmental sense, saving both on resources and carbon emissions. Reuse is commercially and technically viable, as demonstrated by isolated projects. Although steel reuse has been identified as an effective method to reduce the carbon and energy impact of construction, it is in effect only marginally used in practice. We found that although there is a sufficient spread between the price of steel scrap and new steel, this difference cannot be captured by the demolition contractors. In steel multi-storey high-rise building structures, composite construction is the most efficient and economic forms of construction. Composite beams incorporate composite floors with profiled steel sheeting are the most common structural system used in multi-storey high-rise buildings and is seen as one of the most important ways of expanding the use of steel buildings in Europe, i.e. increasing market share. However, in terms of reuse, current composite construction systems require extensive cutting on-site during the demolition process making reuse not viable. This paper presents an innovative composite system that is designed for deconstruction and reuse, its structural behaviour and failure modes were observed and analysed through a series of experimental studies and numerical simulation. The results showed that the structural behaviour of this new form of composite system not only allows for deconstruction and reuse, it has a similar structural performance to the traditional composite system with welded shear connectors.
15

Research in composite concrete filled columns

Lam, Dennis January 2011 (has links)
Composite concrete filled steel tube columns are increasingly used for high-rise building structures, owing to their excellent structural performance such as superior load-bearing capacity, high ductility, good energy dissipation and fire behaviour which arises from the combination of the two different materials in the structure. Composite structures exploit the characteristics of steel and concrete; steel with its high tensile strength and ductility and concrete with its high compressive strength and stiffness. In general, concrete filled composite columns with circular hollow sections (CHS) have the advantage over columns with other section shapes due to the circular cross sections providing a uniform confinement to the concrete core.
16

Predicting Moment and Rotation Capacity of Semi-rigid Composite Joints with Precast Hollowcore Slabs

Lam, Dennis, Fu, F., Ye, J. January 2009 (has links)
No
17

Competencies Required for the Design and Implementation of Manufacturing Systems for Advanced Composite Structures

Lange, Robert Douglas 05 1900 (has links)
The problem with which this investigation is concerned is that of identifying and prioritizing the competencies required to design and implement manufacturing systems for advanced composite structures. The classical Delphi procedure is the research method used for the conduct of this study. A five-member advisory board developed a list of seventeen categories under which the competencies would reside. In the first-round questionnaire, the seventeen categories were presented to a Delphi panel of experts who provided up to five competencies required in each category. The first-round returns provided two new categories and 973 competency statements. Duplications were eliminated and 366 competency statements remained in nineteen categories. The second, third, and fourth rounds were a reiterative rating process. The panel was asked to rate the items in the questionnaire based on their relative importance to the intent of the study. The importance rating scale included "very important," "important," "slightly important," and "unimportant." The means and interquartile ranges were calculated for each statement and provided as feedback in the successive round. Kendall's coefficient of concordance W for tied ranks was used to validate the panel consensus. The W was significant at the .01 level for each of the three rounds where rating was performed. The data were presented in rank order within categories by importance level. Eighteen percent of the competency statements were rated "very important," 77 percent "important, and 5 percent "slightly important." No statements were rated "unimportant" by the panel. It was concluded that, as indicated by the 19 categories and 366 competencies, the scope of the requirements for designing and implementing manufacturing systems for advanced composite structures represent a broad range of knowledge and skill requirements. The breadth of the range of the requirements indicated the need for the development of areas of specialization within the subject field to adequately address the requirements.
18

Buckling, Postbuckling And Progressive Failure Analyses Of Composite Laminated Plates Under Compressive Loading

Namdar, Omer 01 September 2012 (has links) (PDF)
The aim of this thesis is to investigate buckling, post-buckling behaviors and failure characteristics of composite laminated plates under compressive loading with the help of finite element method and experiments. In the finite element analyses, eigen value extraction method is used to determine the critical buckling loads and nonlinear Riks and Newton-Raphson methods are employed to obtain post-buckling behaviors and failure loads. The effects of geometric imperfection amplitude on buckling and post-buckling are discussed. Buckling load, post buckling loaddisplacement relations, out of plane displacements and end shortening of the plates are determined numerically. Furthermore, the numerical results are compared with experimental findings for two different laminates made of woven fabric and unidirectional tapes where buckling, post-buckling behavior and structural failure of laminated plates were determined. The comparisons show that there is a good agreement between numerical and experimental results obtained for buckling load and post-buckling range. However, 15 % - 22 % differences are predicted between the experimental and numerical results for failure of laminates made of woven fabric whereas the laminates with uni-directional tapes show good agreement.
19

Paired pulse basis functions and triangular patch modeling for the method of moments calculation of electromagnetic scattering from three-dimensional, arbitrarily-shaped bodies

Mackenzie, Anne I., Rao, S. M. January 2008 (has links)
Dissertation (Ph.D.)--Auburn University,2008. / Abstract. Vita. Includes bibliographic references (p.83-85).
20

Ponte mista de madeira-concreto em vigas treliçadas de madeira

Moraes, Victor Marcuz de [UNESP] 11 April 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:25:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-04-11Bitstream added on 2014-06-13T18:53:17Z : No. of bitstreams: 1 moraes_vm_me_ilha_prot.pdf: 4456756 bytes, checksum: 70a028ea28db2cfaed1abecec234c525 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As pontes mistas com vigas de madeira e tabuleiro de concreto, que constituem uma técnica já bastante estudada pelo meio acadêmico brasileiro, vêm ganhando cada vez mais espaço entre os projetistas e construtores de pontes em estradas vicinais do interior do Brasil. Entretanto, o vão dessas pontes é limitado pelo comprimento das peças de madeira, cujos valores máximos, em geral, ficam em torno de 6 metros para vigas serradas e 12 metros para vigas roliças. Neste contexto, a presente pesquisa propõe um novo sistema estrutural de pontes mistas para vencer vãos da ordem de 15 a 20 metros, constituído por vigas treliçadas de madeira que suportam a laje de concreto armado. O tabuleiro do sistema proposto pode ser executado utilizando, como pré-laje, painéis treliçados pré-moldados auto-portantes, evitando-se escoramentos e, conseqüentemente, reduzindo o tempo e os custos de construção. A laje final é solidarizada às treliças de madeira por intermédio de pinos metálicos de cisalhamento, que fazem com que ambos os materiais trabalhem solidariamente na resistência aos esforços solicitantes, buscando, portanto, a otimização do uso estrutural desses materiais. A principal abordagem desta pesquisa é experimental, com a construção e análise de um modelo físico reduzido na escala 1:4... / Timber-concrete composite structures - TCCS - constitute a technique well studied by the Brazilian academy and have been each time more present among the designers and constructors of bridges in secondary roads in the interior of Brazil. However, the span of these bridges is limited by the length of the timber beams, whose maximum values, in general, are around 6 meters for sawed beams and 12 meters for round beams. In this context, the present research suggests a new structural system of composite bridges, to overcome spans from 15 to 20 meters, built by trussed timber beams that support a reinforced concrete deck. The deck of the system can be executed using precast self-supported trussed panels, preventing props and, consequently, reducing time and costs of construction. The final slab is connected to the trussed beams by metallic shear bolts, which make that both the materials (timber and concrete) work together in the resistance to the requesting efforts, aiming the optimization of the structural use of these materials. This research was based on an experimental approach, with the construction and analysis of a reduced physical model in the scale 1:4, based on a bridge design classified as 30t with a free span of 16 meters. The model was instrumented with strain gauges and... (Complete abstract click electronic access below)

Page generated in 0.091 seconds