• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical recycling of high density polyethylene/flax fiber composites

Benoit, Nathalie 24 April 2018 (has links)
Ce travail de doctorat est consacré à la production, au recyclage mécanique long-terme et à la caractérisation de matériaux polymères et composites à base de polyéthylène haute densité (HDPE) et de fibre de lin. L’objectif est de déterminer l’aptitude au recyclage long-terme de ces composites et de leur matrice, tout en évaluant la perte de performance subie. Le recyclage est réalisé ici par une extrusion en boucle fermée, durant 50 cycles, sans ajout intermédiaire de matières vierges et sans prise en compte de la détérioration et de la contamination subies lors du cycle de vie des produits. Dans la première partie, une revue de littérature présente l’état de l’art concernant le recyclage mécanique des composites thermoplastiques. Les différents types de recyclage de composites sont présentés, ainsi que les différents travaux réalisés sur le recyclage de composites thermoplastiques à base de fibres naturelles ou inorganiques. Enfin, les différentes limitations rencontrées lors du recyclage de ces composites sont mises en lumière et des solutions sont présentées. Au cours de cette revue, des lacunes importantes sur le recyclage mécanique long-terme de ces composites sont observées. Dans la seconde partie de ce travail, le polyéthylène haute densité est étudié et recyclé seul afin de connaître ses propriétés et son comportement au recyclage, tout en servant de base de comparaison pour les composites produits par la suite. L’étude des propriétés physique, thermique, moléculaire et mécanique permet d’analyser les différents mécanismes de dégradation induits par le recyclage mécanique. Les résultats montrent une diminution de la contrainte au seuil d’écoulement et une forte augmentation de l’élongation à la rupture avec le recyclage, indiquant que des phénomènes de rupture de chaînes ont lieu dans le polymère. La plupart des autres propriétés demeurent constantes et confirment le maintien des performances du polymère avec le recyclage. Dans la dernière partie de cette thèse, deux séries de composites sont produites à partir du polyéthylène haute densité et de la fibre de lin (15% en masse), avec et sans polyéthylène greffé d’anhydride maléique (MAPE) comme agent couplant. Toutes deux seront caractérisées similairement au polymère afin d’évaluer l’effet de la présence de fibre dans le polymère. Une analyse de la distribution de fibres est aussi réalisée afin d’observer l’effet du recyclage mécanique sur la taille des fibres. L’analyse mécanique révèle que la fibre fournit un renfort efficace au polymère, en particulier avec l’agent couplant, mais les propriétés à la rupture diminuent. Cet effet diminue avec le recyclage, alors que les propriétés à l’élongation augmentent, du fait de la réduction de longueur des fibres. L’effet de l’agent couplant disparaît aussi au cours du recyclage. Toutefois, la majorité des performances mécaniques après recyclage restent supérieures à celles du polymère. / This thesis focuses on the production, the mechanical recycling and the characterization of polymers and composites based on high density polyethylene (HDPE) and flax fibers. It aims to determine the materials potential towards long-term recycling and to evaluate the resulting loss of performance. The recycling is realized by closed-loop extrusion, and repeated up to 50 times, without any addition of new material, and without any consideration of the possible degradation and contamination undergone during the life-cycle of the products. In the first part, a literature review presents the state of the art concerning the mechanical recycling of thermoplastic composites. The various types of composites recycling are introduced, as well as the various works conducted on the recycling of thermoplastic composites reinforced with both natural and inorganic fillers. Finally, the various limitations to the composites recycling are presented and some solutions are suggested. During this review an important lack of knowledge on the long-term mechanical recycling of these composites is observed. In the second part of this work, the high density polyethylene is studied and recycled in order to know its properties and its behavior towards recycling, as well as to be used as a comparison basis for the further parts. The study of the mechanical, thermal, molecular and physical properties leads to the better understanding of the various degradation mechanisms induced by mechanical recycling. The results show a decrease of the yield stress and an important increase of the strain at break with recycling, indicating that chain scissions take place in the polymer during recycling. Most of the other properties remained stable, and confirmed the conservation of the polymer performances with recycling. In the last part of this work, high density polyethylene is used to produce two series of composites with 15% wt. of flax fiber, with and without maleic anhydride grafted polyethylene (MAPE) as a coupling agent. Similar characterizations as for the matrix are conducted on both composites as to evaluate the effect of the fibers in the polymer matrix. A complete analysis of the fiber distribution is also performed to observe the effect of mechanical recycling on the fiber dimensions. The mechanical analysis reveals that the fibers provides an efficient reinforcement to the matrix, and especially with coupling agent, but the properties at break decrease. Nevertheless, this effect decreases with recycling, while the elongation properties increase due to the fiber size reduction. The effect of the coupling agent disappears with recycling. However, most mechanical properties remain higher for the composites after recycling than for the neat matrix.

Page generated in 0.0538 seconds